Violympic toán 7

NT

Cho tam giác ABC cân tại A, gọi M là trung điểm của cạnh BC. Trên đoạn thẳng MB lấy điểm D, trên đoạn thẳng MC lấy điểm E sao cho BD=CE. Kẻ \(DH\perp AB,EK\perp AC\left(H\in AB,K\in AC\right)\). Gọi O là giao điểm của DH và EK. Chứng minh

a) \(\Delta ABD=\Delta ACE\)
b) DH=EK

c) AO là phân giác của góc BAC

d) 3 điểm A,M,O thẳng hàng

NN
27 tháng 3 2019 lúc 20:53

P/s : Hình bạn tự vẽ giúp mình nha. Cảm ơn bạn nhiều !

a) Xét 🔺ABD và 🔺ACE có :

AB = AC ( 🔺ABC cân tại A )

^ABC = ^ACB (🔺ABC cân tại A )

BD = CE ( gt )

Suy ra 🔺ABD = 🔺ACE ( c.g.c )

b) Xét 🔺HBD và 🔺KCE có :

^BHD = ^CKE = 90 độ

BD = BE ( gt )

^ABC = ^ACB ( 🔺ABC cân tại A )

Suy ra 🔺HBD = 🔺KCE ( ch - gn )

=> DH = EK ( 2 cạnh tương ứng )

c) Xét 🔺ABM và 🔺ACM có :

AB = AC ( 🔺ABC cân tại A )

MB = MC ( vì M là trung điểm của BC )

AM là cạnh chung

Suy ra 🔺ABM = 🔺ACM ( c.c.c )

=> ^BAM = ^CAM ( 2 góc tương ứng )

hay AM là tia phân giác của ^BAC (1)

mà M nằm giữa A và O ( hình vẽ )

=> AO cũng là tia phân giác của ^BAC (2)

d) Từ (1) và (2) => A, M, O thẳng hàng

Bình luận (0)

Các câu hỏi tương tự
HH
Xem chi tiết
PT
Xem chi tiết
NC
Xem chi tiết
TH
Xem chi tiết
NT
Xem chi tiết
KB
Xem chi tiết
KL
Xem chi tiết
HP
Xem chi tiết
VG
Xem chi tiết