Violympic toán 6

HB

Cho S=1-3+3^2-3^3 +........+3^98 -3^99

a) chứng minh rằng S là bội của -20

b)tính S từ đó suy ra 3^100 chia 4 dư 1

MV
9 tháng 1 2018 lúc 16:37

\(a.A=1-3+3^2-3^3+...+3^{98}-3^{99}\\ =\left(1-3+3^2-3^3\right)+\left(3^4-3^5+3^6-3^7\right)+...+\left(3^{96}-3^{97}+3^{98}-3^{99}\right)\\ =\left(1-3+3^2-3^3\right)+3^4\left(1-3+3^2-3^3\right)+...+3^{96}\left(1-3+3^2-3^3\right)\\ =\left(1-3+3^2-3^3\right)\left(1+3^4+...+3^{96}\right)\\ =\left(-20\right)\left(1+3^4+...+3^{96}\right)⋮\left(-20\right)\\ \Rightarrow A\in B\left(-20\right)\\ \Rightarrow A⋮4\)b.\(A=1-3+3^2-3^3+...+3^{98}-3^{99}\\ 3A=3-3^2+3^3-3^4+...+3^{99}-3^{100}\\ A+3A=\left(1-3+3^2-3^3+...+3^{98}-3^{99}\right)\left(3-3^2+3^3-3^4+...+3^{99}-3^{100}\right)\\ 4A=1-3^{100}\\ A=\dfrac{1-3^{100}}{4}\) Ta có: \(-4A⋮4\\ \Leftrightarrow-\left(1-3^{100}\right)⋮4\\\Leftrightarrow 3^{100}-1⋮4\\ \Rightarrow3^{100}\text{ chia }4\text{ dư }1\)

Bình luận (0)