Đại số lớp 7

NP

Cho S = \(\overline{abc}+\overline{bca}+\overline{cab}\)

CMR: S không phải là số chính phương

HQ
10 tháng 3 2017 lúc 19:45

Ta có:

\(S=\overline{abc}+\overline{bca}+\overline{cab}\)

\(\Rightarrow S=\left(100a+10b+c\right)+\left(100b+10c+a\right)+\left(100c+10a+b\right)\)

\(\Rightarrow S=100a+10b+c+100b+10c+a+100c+10a+b\)

\(\Rightarrow S=111a+111b+111c\)

\(\Rightarrow S=111\left(a+b+c\right)\)

\(\Rightarrow S=37.3\left(a+b+c\right)\)

Giả sử \(S\) là số chính phương thì S phải chứa \(37\) mủ với số chẵn

\(\Rightarrow3\left(a+b+c\right)⋮37\)

\(\Rightarrow a+b+c⋮37\)

Điều này không xảy ra vì \(1\le a+b+c\le27\)

Vậy \(S=\overline{abc}+\overline{bca}+\overline{cab}\) không phải là số chính phương (Đpcm)

Bình luận (2)
NT
10 tháng 3 2017 lúc 19:36

S=abc+bca+cab=
(1000a+10b+c) +(1000b+10c+a)+(1000c+10a+b)=
1011*(a+b+c) =3*337*(a+b+c)

Do 3 & 337 là số nguyên tố, để S là số chính phương thì tổng a+b+c phải bằng 3*337 hoặc là (3*337)^(2n+1) (*)

Tuy nhiên do a,b,c<=9 => a+b+c<=27 nên không thể nào thỏa mãn (*)

Vậy không tồn tại số chính phương S

Bình luận (0)

Các câu hỏi tương tự
NA
Xem chi tiết
PM
Xem chi tiết
OO
Xem chi tiết
TH
Xem chi tiết
TH
Xem chi tiết
NT
Xem chi tiết
NL
Xem chi tiết
MK
Xem chi tiết
NA
Xem chi tiết