TN

Cho pt \(x^2-2(m-4)x-m^2+4=0\) 

Tìm tất cả các giá trị của m để pt có 2 nghiệm \(x_1,x_2\) thỏa mãn \(\dfrac{1}{x_1}+\dfrac{1}{x_2}+\dfrac{4}{x_1x_2}=1\)

NT
7 tháng 2 2022 lúc 21:46

Theo Vi et \(\left\{{}\begin{matrix}x_1+x_2=2\left(m-4\right)\\x_1x_2=-m^2+4\end{matrix}\right.\)

\(\dfrac{x_1+x_2}{x_1x_2}+\dfrac{4}{x_1x_2}=1\)

Thay vào ta được : \(\dfrac{2\left(m-4\right)+4}{-m^2+4}=1\Leftrightarrow\dfrac{2m-4}{\left(2-m\right)\left(m+2\right)}=1\Leftrightarrow\dfrac{-2}{m+2}=1\Rightarrow-2=m+2\Leftrightarrow m=-4\)

Bình luận (0)

Các câu hỏi tương tự
DN
Xem chi tiết
LA
Xem chi tiết
GC
Xem chi tiết
SS
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
DV
Xem chi tiết
H24
Xem chi tiết