Ôn tập toán 6

TD

Cho phân số \(A=\dfrac{6n-3}{3n+2}\)

a. Tìm n \(\in\) Z để A có giá trị nguyên

b. Tìm n \(\in\) Z để A có GTNN

NT
12 tháng 7 2017 lúc 19:20

a,Điều kiện: \(3n+2\ne0\Rightarrow n\ne\dfrac{-2}{3}\)

Ta có:\(A=\dfrac{6n-3}{3n+2}=\dfrac{6n+4-7}{3n+2}=2-\dfrac{7}{3n+2}\)

Do 2 nguyên nên để A có giá trị nguyên thì \(\dfrac{7}{3n+2}\) nguyên => 3n+2 là ước của 7 \(\Rightarrow3n+2\in\left\{\pm1;\pm7\right\}\)

+) Với 3n+2=1 => 3n=-1 => \(n=-\dfrac{1}{3}\) (ko thỏa mãn)

+) Với 3n+2=-1 => 3n=-3 => n=-1 (thỏa mãn)

+) Với 3n+2=7 => 3n=5 => n=3/5 (ko thỏa mãn)

+) Với 3n+2=-7 => 3m=-9 => n=-3 (thỏa mãn)

Vậy \(n\in\left\{-1;-3\right\}\)

b, Do \(A=2-\dfrac{7}{3n+2}\) => để A đạt GTNN thì \(\dfrac{7}{3n+2}\) lớn nhất. Vì 7 dương nên để \(\dfrac{7}{3n+2}\) lớn nhất thì 3n+2 phải có giá trị dương nhỏ nhất.

\(n\in Z\) => n=0

Với n=0 thì \(A=2-\dfrac{7}{3.0+2}=2-3,5=-1,5\)

Vậy minA=-1,5 khi n=2

 

Bình luận (1)

Các câu hỏi tương tự
MC
Xem chi tiết
TG
Xem chi tiết
LN
Xem chi tiết
TN
Xem chi tiết
TG
Xem chi tiết
NP
Xem chi tiết
GP
Xem chi tiết
NC
Xem chi tiết
NL
Xem chi tiết