Violympic toán 6

DD

cho p; p+20 va p+40 la cac so nguyen to

chung minh rang p+80 cung la so nguyen to

HQ
24 tháng 4 2017 lúc 9:39

Giải:

Ta xét các trường hợp:

Nếu \(p=2\) thì \(p+20=22\) không là số nguyên tố (loại)

Nếu \(p=3\) thì \(\left\{{}\begin{matrix}p+20=23\\p+40=43\\p+80=83\end{matrix}\right.\) đều là số nguyên tố (chọn)

Nếu \(p>3\) thì ta có 2 dạng là \(\left[{}\begin{matrix}3k+1\\3k+2\end{matrix}\right.\)

\(*)\) Với \(p=3k+1\) ta có:

\(p+20=\left(3k+1\right)+20=3k+21\) \(=3\left(k+7\right)\)

Dễ thấy \(\left[{}\begin{matrix}3\left(k+7\right)⋮3\\3\left(k+7\right)>3\end{matrix}\right.\) \(\Rightarrow3\left(k+7\right)\) là hợp số (loại)

\(*)\) Với \(p=3k+2\) ta có:

\(p+20=\left(3k+2\right)+40=3k+42\) \(=3\left(k+14\right)\)

Dễ thấy \(\left[{}\begin{matrix}3\left(k+14\right)⋮3\\3\left(k+14\right)>3\end{matrix}\right.\) \(\Rightarrow3\left(k+14\right)\) là hợp số (loại)

Vậy với \(p=3\) thì \(p+80\) cũng là số nguyên tố (Đpcm)

Bình luận (0)

Các câu hỏi tương tự
FA
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
HD
Xem chi tiết
H24
Xem chi tiết
YM
Xem chi tiết
H24
Xem chi tiết
PP
Xem chi tiết
HH
Xem chi tiết