Chương 1: KHỐI ĐA DIỆN

NH

Cho lăng trụ đều ABC.A'B'C' có AB = a và đường thẳng A'B tạo với đáy một góc  bằng 60 độ. Gọi M và N lần lượt là trung điểm của các cạnh AC và B'C'. Tính theo a thể tích củ khối lăng trụ ABC.A'B'C' và độ dài của MN

TT
30 tháng 3 2016 lúc 19:49

Khối đa diện

Bình luận (0)
PD
31 tháng 3 2016 lúc 9:45

A B C A' B' C' N M K

\(AA'\perp\left(ABC\right)\Rightarrow\widehat{A'BA}\) là góc giữa A'B với đáy

Suy ra : \(\widehat{A'BA}=60^o\Rightarrow AA'=AB.\tan\widehat{A'BA}=a\sqrt{3}\)

Do đó \(V_{ABC.A'B'C'}=AA'.S_{\Delta ABC}=\frac{3a^2}{4}\)

Gọi  K là trung điểm cạnh BC, suy ra Tam giác MNK vuông tại K, có :

\(MK=\frac{AB}{2}=\frac{a}{2};NK=AA'=a\sqrt{3}\)

Do đó : \(MN=\sqrt{MK^2+NK^2}=\frac{a\sqrt{13}}{2}\)

Bình luận (0)