Chương 1: KHỐI ĐA DIỆN

MB

Cho lăng trụ ABCD.A'B'C'D' có đáy ABCD là hình chữ nhật, AB=a, AD=\(a\sqrt{3}\). Hình chiếu vuông góc của điểm \(A_1\) lên mặt phẳng (ABCD) trung với giao điểm của AC và BD. Góc giữa 2 mặt phẳng \(\left(ADD_1A_1\right)\) và (ABCD) bằng 60 độ. Tính thể tích của khối lăng trụ đã cho và khoảng cách từ điểm \(B_1\) đến mặt phẳng (\(A_1BD\)) theo a

BP
1 tháng 4 2016 lúc 11:28

Gọi O là giao điểm của AC và BD \(\Rightarrow A_1O\perp\left(ABCD\right)\)

Gọi E là trung điểm của AD \(\Rightarrow\begin{cases}OE\perp AD\\A_1E\perp AD\end{cases}\)

Suy ra \(\widehat{A_1EO}\) là góc giữa 2 mặt phẳng \(\left(ADD_1A_1\right)\) và \(\left(ABCD\right)\) \(\Rightarrow\widehat{A_1EO}=60^o\)

Suy ra : \(A_1O=OE.\tan\widehat{A_1EO}=\frac{AB}{2}\tan\widehat{A_1EO}=\frac{a\sqrt{3}}{2}\)

Diện tích đáy \(S_{ABCD}=AB.AD=a^2\sqrt{3}\)

Thể tích \(V_{ABCD.A'B'C'D'}=S_{ABCD}.A_1O=\frac{3a^2}{2}\)

Ta có : \(B_1C||A_1D\)\(\Rightarrow B_1C||\left(A_1CD\right)\)

                             \(\Rightarrow d\left(B_1,\right)\left(A_1BD\right)=d\left(C,\left(A_1BD\right)\right)=CH\)

                            \(\Rightarrow d\left(B_1,\right)\left(A_1BD\right)=CH=\frac{CD.CB}{\sqrt{CD^2+CB^2}}=\frac{a\sqrt{3}}{2}\)

 

Bình luận (0)
BP
1 tháng 4 2016 lúc 11:41

A E D C B O A1 B1 C1 D1

Bình luận (0)

Các câu hỏi tương tự
NK
Xem chi tiết
NK
Xem chi tiết
HN
Xem chi tiết
DA
Xem chi tiết
HT
Xem chi tiết
VN
Xem chi tiết
DT
Xem chi tiết
TC
Xem chi tiết
NT
Xem chi tiết