Chương II - Đường tròn

HH

Cho hình thang cân ABCD (AB>CD) nội tiếp đường tròn (O). Kẻ các tiếp tuyến của (O) tại A và D chúng cắt nhau tại E. Gọi M là giao điểm của hai đường chéo AC và BD

a) Chứng minh: AEDO nội tiếp

b) AB//EM

c) EM giao cạnh bên AD và BC của hình thang lần lượt tại H và K. Chứng minh: M là trung điểm của HK

d) Chứng minh: \(\dfrac{2}{HK}=\dfrac{1}{AB}+\dfrac{1}{CD}\)

PC
31 tháng 5 2018 lúc 22:50

a, Tứ giác AEDO nội tiếp vì tổng 2 góc đối bằng 180 độ

b, Dễ cm ADMO n.t => AEDM n.t => DME = DAE

Mà DAE=DBA => DME=DBA => đpcm

c, áp dụng Ta-let

\(\dfrac{HM}{AB}=\dfrac{DO}{DB}\)\(\dfrac{MK}{AB}=\dfrac{CM}{CA}\)

\(\dfrac{DO}{DB}=\dfrac{CM}{CA}\)(Vì ABCD là hthang cân)

=> MK=MH =>đpcm

d, ta cm \(\dfrac{2}{HK}=\dfrac{1}{AB}+\dfrac{1}{CD}\Leftrightarrow\dfrac{HK}{AB}+\dfrac{HK}{CD}=2\)

\(\Leftrightarrow2\left(\dfrac{HM}{AB}+\dfrac{HM}{CD}\right)=2\Leftrightarrow\dfrac{HM}{AB}+\dfrac{HM}{CD}=1\)

\(\Leftrightarrow\dfrac{MD}{BD}+\dfrac{BM}{BD}=1\left(đúng\right)\)

Bình luận (0)

Các câu hỏi tương tự
CL
Xem chi tiết
LD
Xem chi tiết
H24
Xem chi tiết
NK
Xem chi tiết
GA
Xem chi tiết
TH
Xem chi tiết
NH
Xem chi tiết
H24
Xem chi tiết
HA
Xem chi tiết