H24

Cho hình thang ABCD (AB//CD; AB<CD). Gọi O là giao của hai đường chéo AC và BD. Qua O kẻ đường thẳng song song với AB cắt AD, BC tại M,N

a, chứng minh OA.OD=OB.OC

b, biết AB=5cm; CD=10cm; OC=6cm. Tính OA,OM

c, chứng minh 1/OM = 1/ON = 1/AB + 1/ CD

TH
6 tháng 2 2022 lúc 11:35

c. -Xét △ADC có: OM//DC (gt).

\(\Rightarrow\dfrac{MO}{DC}=\dfrac{AO}{AC}\) (định lí Ta-let).

\(\Rightarrow\dfrac{DC}{MO}=\dfrac{AC}{AO}\)

\(\Rightarrow\dfrac{DC}{OM}-1=\dfrac{OC}{AO}\) (1).

-Xét △BDC có: ON//DC (gt).

\(\Rightarrow\dfrac{ON}{DC}=\dfrac{BO}{BD}\) (định lí Ta-let).

\(\Rightarrow\dfrac{DC}{ON}=\dfrac{BD}{BO}\)

\(\Rightarrow\dfrac{DC}{ON}-1=\dfrac{OD}{BO}\)

-Xét △ABO có: AB//DC (gt).

\(\Rightarrow\dfrac{OD}{BO}=\dfrac{OC}{OA}=\dfrac{DC}{AB}\) (3)

-Từ (1), (2),(3) suy ra:

\(\dfrac{DC}{OM}-1=\dfrac{DC}{ON}-1=\dfrac{DC}{AB}\)

\(\Rightarrow\dfrac{DC}{OM}=\dfrac{DC}{ON}=\dfrac{DC}{AB}+1=\dfrac{AB+DC}{AB}\)

\(\Rightarrow\dfrac{1}{OM}=\dfrac{1}{ON}=\dfrac{AB+DC}{AB.DC}=\dfrac{1}{AB}+\dfrac{1}{CD}\)

Bình luận (0)
NT
6 tháng 2 2022 lúc 11:15

a: Xét ΔAOB và ΔCOD có 

\(\widehat{OAB}=\widehat{OCD}\)

\(\widehat{AOB}=\widehat{COD}\)

Do đó: ΔAOB∼ΔCOD

Suy ra: \(\dfrac{OA}{OC}=\dfrac{OB}{OD}=\dfrac{AB}{CD}\)

hay \(OA\cdot OD=OB\cdot OC\)

b: \(\dfrac{OA}{OC}=\dfrac{AB}{CD}\)

\(\Leftrightarrow OA=\dfrac{1}{2}\cdot6=3\left(cm\right)\)

 

Bình luận (0)

Các câu hỏi tương tự
SN
Xem chi tiết
DH
Xem chi tiết
KM
Xem chi tiết
HH
Xem chi tiết
VD
Xem chi tiết
ZT
Xem chi tiết
BN
Xem chi tiết
LT
Xem chi tiết
BD
Xem chi tiết