Cho hàm số y=f(x) có đạo hàm liên tục trên R và thỏa mãn 2f(5-3x)+3f(x+1)=x^2+4x+5. Viết phương trình tiếp tuyến của đồ thị hàm số y=f(x) tại điểm có hoành độ bằng 2
Cho hàm số (m là tham số) có đồ thị là (G).
a) Xác định m để đồ thị (G) đi qua điểm (0 ; -1).
b) Khảo sát sự biến thiên và vẽ đồ thị của hàm số vớ m tìm được.
c) Viết phương trình tiếp tuyến của đồ thị trên tại giao điểm của nó với trục tung.
Cho hàm số \(y=-x^3+(m-1)x^2-m+2 (*) \)
a. Với giá trị nào của m để hàm số (*) có cức đại và cực tiểu.
b. Với giá trị nào của m để đồ thị hàm số (*) cắt trục Ox tại 3 điểm phân biệt.
c. Tìm điểm cố định mà đồ thị hàm số (*) đi qua.
Cho hàm đa thức \(y=\left[f\left(x^2+2x\right)\right]'\) có đồ thị cắt trục \(Ox\) tại 5 điểm phân biệt như hình vẽ. Hỏi có bao nhiêu giá trị của tham số \(m=2022m\in Z\) để hàm số \(g\left(x\right)=f\left(x^2-2\left|x-1\right|-2x+m\right)\) có 9 điểm cực trị?
Giúp mình với ạ, mình cảm ơn nhiều♥
a)Xác định điểm I thuộc đồ thị (C) của hàm số đã cho biết rằng hoành độ của điểm I là nghiệm của Phương trình f’’(x)= 0.
b)Viết công thức chuyển hệ tọa độ trong phép tịnh tiến vectơ OI và viết Phương trình của đường cong với hệ tọa độ IXY. Từ đó suy ra bằng I là tâm đối xứng đường cong (C).
c)Viết phương trình tiếp tuyến của đường cong (C) tại điểm I đối với hện tọa độ Oxy. Chứng minh rằng trên khoảng (-∞;1) đường cong (C) nằm phía dưới tiếp tuyến tại I của (C) và trên khoảng (1; +∞) đường cong (C) nằm phía trên tiếp tuyến đó.
Cho hàm số .
a) Chứng minh rằng với mọi giá trị của tham số m, hàm số luôn đồng biến trên mỗi khoảng xác định của nó.
b) Xác định m để tiệm cận đứng đồ thị đi qua a(-1 ; ).
c) Khảo sát sự biến thiên và vẽ đồ thị của hàm số khi m = 2.
Số đường tiệm của đồ thị hàm số: y= x/x-4
Cho hàm số có đồ thị như hình vẽ
Tìm tất cả giá trị của tham số m để đồ thị của hàm y=x4 + 2mx2 + m2 + m có 3 điểm cực trị