Bài 1: Căn bậc hai

DT

Cho hai số không âm a và b. Ta gọi trung bình nhân của hai số a và b và \(\sqrt{ab}\). Chứng minh rằng trung bình cộng của hai số a và b không nhỏ hơn trung bình nhân của chúng (bất đẳng thức của Côsi).

H24
8 tháng 7 2021 lúc 14:26

Ta cần c/m: \(\dfrac{a+b}{2}\ge\sqrt{ab}\left(1\right)\) (a;b ≥ 0)

Thật vậy:

\(\left(1\right)\Leftrightarrow\left(\dfrac{a+b}{2}\right)^2\ge ab\\ \Leftrightarrow\dfrac{a^2+2ab+b^2}{4}\ge ab\\ \Leftrightarrow a^2+2ab+b^2\ge4ab\\ \Leftrightarrow a^2-2ab+b^2\ge0\\ \Leftrightarrow\left(a-b\right)^2\ge0\left(\text{luôn đúng }\forall a;b\ge0\right)\)

Vậy BĐT Cô-si cho 2 số không âm được c/m.

Bình luận (0)

Các câu hỏi tương tự
DT
Xem chi tiết
KH
Xem chi tiết
KK
Xem chi tiết
SK
Xem chi tiết
PA
Xem chi tiết
KH
Xem chi tiết
PH
Xem chi tiết
PP
Xem chi tiết
DD
Xem chi tiết