Ta có: Oz là tia phân giác của \(\widehat{xOy}\) (gt)
\(\Rightarrow\widehat{xOz}=\widehat{yOz}\)
Vì \(Oz\perp Oz'\) (gt) nên: \(\widehat{yOz}+\widehat{yOz'}=90^o\)
Lại có: \(\widehat{xOz}+\widehat{yOz}+\widehat{yOz'}+\widehat{x'Oz'}=180^o\)
\(\Rightarrow\widehat{xOz}+\widehat{x'Oz'}=180^o-\left(\widehat{yOz}+\widehat{yOz'}\right)\)
\(=180^o-90^o=90^o\)
\(\Rightarrow\widehat{xOz}+\widehat{x'Oz'}=\widehat{yOz}+\widehat{yOz'}=90^o\)
Mà \(\widehat{xOz}=\widehat{yOz}\) (cmt)
\(\Rightarrow\widehat{x'Oz'}=\widehat{yOz'}\)
`=>` Tia Oz' là tia phân giác của \(\widehat{x'Oy}\) (đpcm)