Ta có Am là tia phân giác của góc xAy nên
\(\begin{array}{l}\widehat {xAm} = \frac{1}{2}.\widehat {xAy}\\ \Rightarrow \widehat {xAy} = 2.\widehat {xAm} = 2.65^\circ = 130^\circ \end{array}\)
Ta có Am là tia phân giác của góc xAy nên
\(\begin{array}{l}\widehat {xAm} = \frac{1}{2}.\widehat {xAy}\\ \Rightarrow \widehat {xAy} = 2.\widehat {xAm} = 2.65^\circ = 130^\circ \end{array}\)
Vẽ góc xOy có số đo bằng 60 \(^\circ \). Vẽ tia Om là tia đối của tia Ox.
a) Gọi tên hai góc kề bù có trong hình vừa vẽ.
b) Tính số đo góc yOm.
c) Vẽ tia Ot là tia phân giác của góc xOy. Tính số đo các góc tOy và tOm.
Vẽ tia phân giác Oz của xOy có số đo bằng 68\(^\circ \), sử dụng thước đo góc theo hướng dẫn. Nếu Oz là toa phân giác của góc xOy thì \(\widehat {xOz} = \frac{1}{2}.68^\circ = 34^\circ \). Ta có cách vẽ sau:
Cho Hình 3.15a, biết \(\widehat {DMA} = 45^\circ \). Tính số đo góc DMB.
Cho ba tia Ox, Oy, Oz như Hình 3.1, trong đó Ox và Oy là hai tia đối nhau.
a) Em hãy nhận xét về quan hệ về đỉnh, về cạnh của hai góc xOz và zOy.
b) Đo rồi tính tổng số đo góc hai góc xOz và zOy.
Cho Hình 3.15b, biết \(\widehat {xBm} = 36^\circ \). Tính số đo các góc còn lại trong hình vừa vẽ.
Cho hai đường thẳng xx’ và yy’ cắt nhau tại O (H.3.5)
a) Dự đoán xem hai góc xOy và x’Oy’ có bằng nhau không?
b) Đo rồi so sánh số đo hai góc xOy và x’Oy’
Quan sát hình vẽ bên.
Quả cân ở đĩa cân bên trái nặng bao nhiêu kilogam để cân thăng bằng, tức là kim trên mặt đồng hồ của cân là tia phân giác của góc AOB?
Cắt rời một góc xOy từ một tờ giấy rồi gấp sao cho hai cạnh của góc trùng nhau (H.3.9).
Mở mảnh giấy ra, nếp gấp cho ta hình ảnh tia Oz chia góc ban đầu thành hai góc.
a) Em hãy nhận xét về vị trí của tia Oz so với hai cạnh của góc xOy.
b) Em hãy so sánh hai góc xOz và zOy.
Hai đường thẳng xx’ và yy’ cắt nhau tại O sao cho góc xOy vuông (H.3.8). Khi đó các góc yOx’, x’Oy’, xOy’ cũng đều là góc vuông. Vì sao?