--\(Cho\frac{a}{b}=\frac{3}{4}.TínhA=\frac{a^2+3b^2}{a^2-3b^2}\)
--Cho\(\frac{x}{a+2b+c}=\frac{y}{2a+b-c}=\frac{z}{4a-4b+c}\)
CMR \(\frac{a}{x+2y+z}=\frac{b}{2x+y-z}=\frac{c}{4x-4y+z}\)
Please HELP meeeeeee🙏 🙏 🙏 🙏
Bài 1: Cho tỉ lệ thức \(\frac{a}{b}=\frac{c}{d}\)
Chứng minh rằng \(\frac{a.b}{c.d}=\frac{a^2-b^2}{c^2-d^2}\)
Bài 2: Chứng minh rằng nếu \(\frac{a}{b}=\frac{c}{d}\)
a) \(\frac{5a+3b}{5a-3b}=\frac{5a+3b}{5a-3b}\)
b) \(\frac{7a^2+3ab}{11a^2-8b^2}=\frac{7c^2+3cd}{11c^2-8d^2}\)
Cho \(\frac{a}{b}=\frac{c}{d}\). Chứng minh rằng:
a) \(\frac{5a+3b}{5c+3d}=\frac{5a-3b}{5c-3d}\)
b) \(\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}\)
Help meeee!!!
\(Cho\frac{a-1}{2}=\frac{b+3}{4}=\frac{c-5}{6}\) và 5a-3b-4c=46. Xác định a,b,c
Bài 1: Tìm x
A)2\(|\frac{3}{4}\)X + 1\(|\) + \(|\frac{-5}{4}\)\(|\) = 0
B)\(||2x-1|+x|=2\)
C)\(|2x+1|-|x-2|=5\)
D) \(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+....+\frac{1}{\frac{x}{2}.\left(x+1\right)}=\frac{2009}{2011}\)
Bài 2: Cho \(\frac{a}{b}=\frac{c}{d}\). Chứng minh rằng:
a)\(\frac{a+2c}{b+2d}=\frac{4a-3c}{4b-3d}\)
b)\(\frac{ab}{cd}=\frac{\left(a-b\right)^2}{\left(c-d\right)^2}\)
Bài 3:
Cho \(\frac{a}{b}=\frac{3}{4}\). Tính A=\(\frac{a^2+3b^2}{a^2-3b^2}\)
Các bạn giúp mình với ạ, mình đang cần gấp. Cảm ơn nhiều.
1 cho \(\frac{a}{c}=\frac{b}{d}\)
Chứng minh
a) \(\frac{2a+3b}{5a-3b}=\frac{5c+3d}{5c-3d}\)
b) \(\frac{5c^2+3ab}{7c^2+3cd}=\frac{7a^2+3cd}{11c^2+8d^2}\)
2 . \(\frac{bz-cy}{a}=\frac{cx-az}{b}=\frac{ay-bx}{c}\) CM
\(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}\)
3. a=b+c và \(c=\frac{db}{bd}\) CM
\(\frac{a}{b}=\frac{c}{d}\)
4 cho x,y,z>0
tính A= \(\frac{x}{y}\) biết \(\frac{y}{x-z}=\frac{x+y}{z}=\frac{x}{y}\)
Cho \(\frac{a}{b}=\frac{c}{d}\) . Chứng minh rằng : \(\frac{5a+3b}{5a-3b}\) \(=\frac{5c+3d}{5c-3d}\)
Cho \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\) Chứng minh rằng: \(\left(\frac{a+b+c}{b+c+d}\right)^3=\frac{a}{d}\)
cho\(\frac{a}{b}=\frac{c}{d}\) chứng minh rằng:
a, \(\frac{2a+3b}{3a-4b}=\frac{2c+3d}{3c-4d}\)
b, \(\frac{2a^2-3ab+4b^2}{2b^2+5ab}=\frac{2c^2-3cd+4d^2}{2d^2+5cd}\)
Bài 1:
a) Cho tỉ lệ thức \(\frac{3x-y}{x+y}=\frac{3}{4}\) tính giá trị của \(\frac{x}{y}\)
b) Cho tỉ lệ thức \(\frac{a}{b}=\frac{c}{d}\) chứng minh rằng \(\frac{2a+3b}{2a-3b}=\frac{2c+3d}{2c-3d}\)