Ôn tập toán 6

LV

Cho: 

\(\frac{1}{m}=\frac{1}{1+2+3}+\frac{1}{1+2+3+4}+...+\frac{1}{1+2+3+...+59}\)

Chứng minh rằng: \(m>\frac{2}{3}\).

HN
18 tháng 8 2016 lúc 16:14

Ta có : \(\frac{1}{m}=\frac{2}{3.4}+\frac{2}{4.5}+...+\frac{2}{59.60}=2\left(\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{59}-\frac{1}{60}\right)\)

\(=2\left(\frac{1}{3}-\frac{1}{60}\right)=\frac{19}{30}\)

\(\Rightarrow m=\frac{30}{19}>\frac{2}{3}\)

Bình luận (0)
ND
18 tháng 8 2016 lúc 17:08

\(Tac\text{ó}:\frac{1}{m}=\frac{2}{3.4}+\frac{2}{4.5}+.....+\frac{2}{59.60}=2\left(\frac{1}{3}-\frac{1}{4}+.......+\frac{1}{59}-\frac{1}{60}\right)\)

\(=>2\left(\frac{1}{3}-\frac{1}{60}\right)=\frac{19}{30}\\ =>m=\frac{30}{19}>\frac{2}{3}\)

Bình luận (0)

Các câu hỏi tương tự
NH
Xem chi tiết
KK
Xem chi tiết
CV
Xem chi tiết
CD
Xem chi tiết
CD
Xem chi tiết
NH
Xem chi tiết
LH
Xem chi tiết
KK
Xem chi tiết
NM
Xem chi tiết