Xét (O) có
ΔCQD nội tiếp
CD là đường kính
Do đó: ΔCQD vuông tại Q
Xét ΔCOP vuông tại O và ΔCQD vuông tại Q có
\(\widehat{OCP}\) chung
Do đó: ΔCOP~ΔCQD
=>\(\dfrac{CO}{CQ}=\dfrac{CP}{CD}\)
=>\(CP\cdot CQ=CO\cdot CD=2R^2\)
Xét (O) có
ΔCQD nội tiếp
CD là đường kính
Do đó: ΔCQD vuông tại Q
Xét ΔCOP vuông tại O và ΔCQD vuông tại Q có
\(\widehat{OCP}\) chung
Do đó: ΔCOP~ΔCQD
=>\(\dfrac{CO}{CQ}=\dfrac{CP}{CD}\)
=>\(CP\cdot CQ=CO\cdot CD=2R^2\)
Cho đường tròn tâm O bán kính R có hai đường kính AB và CD vuông góc với nhau. Trên đoạn thẳng AB lấy điểm M M khác O . CM cắt đường tròn tâm O tại N. Đường thẳng vuông góc với AB tại M cắt tiếp tuyến tại N của đường tròn ở Q
a) c/m 4 điểm m ,o,q,n thẳng hàng
b)c/ CM*CN=CO*CD
cho đường tròn tâm O bán kính R có hai đường kính AB và CD vuông góc với nhau. Trên đoạn thẳng AB lấy một điểm M (khác 0) đường thẳng CM cắt đường tròn tâm O tại điểm thứ hai N. Đường thẳng vuông góc với AB tại M cắt tiếp tuyến tại N của đường tròn ở điểm P. Chứng minh rằng:
a. Tứ giác OMNP nội tiếp được đường tròn
b. Tứ giác CMPO ngoại tiếp đường tròn
C. Tính CM, CN không phụ thuộc vào vị trí M
Cho đường tròn tâm O bán kính R có hai đường kính AB và CD vuông góc với nhau. Trên đường thẳng AB lấy điểm M(M khác O).CM cắt (O)tại N.Đường thẳng vuông góc AB tại M cắt tiếp tuyến tại N của đường tròn tại P.
1) CMR tứ giác OMNP nội tiếp
cho đường tròn tâm O bán kính R có hai đường kính AB và CD vuông góc với nhau. Trên đoạn thẳng AB lấy một điểm M (khác 0) đường thẳng CM cắt đường tròn tâm O tại điểm thứ hai N. Đường thẳng vuông góc với AB tại M cắt tiếp tuyến tại N của đường tròn ở điểm P. Chứng minh rằng:
a. Tứ giác OMNP nội tiếp được đường tròn
b. Tứ giác CMPO là hình bình hành
C. Tính CM, CN không phụ thuộc vào vị trí M
Cho nửa đường tròn tâm O bán kính R, đường kính AB. C là điểm trên đoạn OA sao cho OC = 2/3 OA. Đường thẳng vuông góc với AB tại C cắt nửa đường tròng ( O:R) tại I. Gọi H là điểm chuyển động trên đoạn CI. Đường thẳng AH cắt nửa đường tròn (O;R) tại M. Đường thẳng BM cắt đường thẳng CI tại D. Tiếp tuyến tại M của nửa đường tròn (O;R) cắt CD tại K. Cho CH = 2/3 CI. Tính diện tích tam giác ABD theo R
Cho (O; R) có đường kính AB. Lấy điểm C trên đường tròn sao cho AC = R.
a) Tính BC theo R và các góc của ΔABC.
b) Gọi M là trung điểm của OA. Vẽ dây CD vuông góc với AB tại M. Chứng
minh: tứ giác ACOD là hình thoi.
c) Tiếp tuyến tại C của đường tròn cắt đường thẳng AB tại E. Chứng minh: ED
là tiếp tuyến của (O).
d) Hai đường thẳng EC và DO cắt nhau tại F. Chứng minh: C là trung điểm của EF
Cho đường tròn (O;R) đường kính AB. Gọi H là một điểm bất kỳ trên đoạn OA (H khác hai điểm O, A). Dựng đường thẳng d vuông góc với OA tại H. Trên d lấy điểm C ở ngoài đường tròn (O). Kẻ các tiếp tuyến CM, CN với đường tròn (O); M và N là tiếp điểm, M cùng phía với A bờ CH. Các đường thẳng CM, CN cắt đường thẳng AB tại P và Q. Đường thẳng qua O và vuông góc với AB cắt MN tại K. CK cắt AB tại I. Chứng minh rằng: 1) HC là tia phân giác của góc MHN 2) I là trung điểm của đoạn thẳng PQ 3) Ba đường thẳng PN, QM và CH đồng quy.
Cho các đường tròn (O; R) và (O’; R’) tiếp xúc trong với nhau tại A (R > R’). Vẽ đường kính AB của (O), AB cắt (O’) tại điểm thứ hai C. Từ B vẽ tiếp tuyến BP với đường tròn (O’), BP cắt (O) tại Q. Đường thẳng AP cắt (O) tại điểm thứ hai R. Chứng minh:
a, AP là phân giác của B A Q ^
b, CP và BR song song với nhau
Cho đường tròn ( O; R ) hai đường kính AB và CD vuông góc với nhau. Lấy điểm M nằm giữa hai điểm A và O. Đường thẳng CM cắt đường tròn tại điểm thứ hai N. Kẻ tiếp tuyến Nx với đường tròn (O; R) tại N. Đường thẳng vuông góc với AB tại M cắt NX tại P.
a) Tứ giác OMND nội tiếp đường tròn và P thuộc đường tròn đó
b) Tứ giác CMPO là hình bình hành
c) CM.CN= \(2R^2\)
Cho nửa đường tròn tâm O đường kính AB trên nửa đường tròn lấy điểm M, trên AB lấy điểm C sao cho AC < CB. Gọi Ax; By là 2 tiếp tuyến của nửa đường tròn. Đường thẳng đi qua M và vuông góc với MC cắt Ax ở P; đường thẳng qua C và vuông góc với CP cắt By tại Q. Gọi D là giao điểm của CP với AM; E là giao điểm của CQ với BM
a) CMR: ACMP nội tiếp
b) CMR: AB song song DE
c) CMR: M;P;Q thằng hàng
d) Biết góc MAO = 60o Tính S quạt chắn cung AM