Đại số lớp 7

DA

cho dãy tỉ số bằng nhau: \(\dfrac{2bz-3cy}{a}=\dfrac{3cx-az}{2b}=\dfrac{ay-2bx}{3c}\) chứng minh \(\dfrac{x}{a}=\dfrac{y}{2b}=\dfrac{z}{3c}\)

giúp mình nhanh, mình đang cần gấp
NT
28 tháng 3 2017 lúc 21:52

Theo đầu bài ta có :\(\dfrac{2bz-3cy}{a}=\dfrac{3cx-az}{2b}=\dfrac{ay-2bx}{3c}\)

Lại có a,b,c\(\ne\)0 vì mẫu phải khác 0

=>\(\dfrac{2bz-3cy}{a}.\dfrac{a}{a}=\dfrac{3cx-az}{2b}.\dfrac{2b}{2b}=\dfrac{ay-2bx}{3c}.\dfrac{3c}{3c}\)

=>\(\dfrac{2abz-3acy}{a^2}=\dfrac{6bcx-2abz}{4b^2}=\dfrac{3acy-6bcx}{9c^2}\)

Áp dụng tc của dãy tỉ số bằng nhau ta có :

\(\dfrac{2abz-3acy}{a^2}=\dfrac{6bcx-2abz}{4b^2}=\dfrac{3acy-6bcx}{9c^2}=\dfrac{2abz-3acy+6bcx-2abz+3acy-6bcx}{a^2+4b^2+9c^2}=\dfrac{0}{a^2+4b^2+9c^2}=0\)

\(\dfrac{2abz-3acy}{a^2}=0\Rightarrow2abz=3acy\) => 2bz = 3cy => \(\dfrac{z}{3c}=\dfrac{y}{2b}\) (1)

\(\dfrac{6bcx-2abz}{4b^2}=0\) => 6bcx = 2abz => 3cx = az => \(\dfrac{x}{a}=\dfrac{z}{3c}\) (2)

Từ (1) và (2) =>\(\dfrac{x}{a}=\dfrac{y}{2b}=\dfrac{z}{3c}\) (đpcm)

Bình luận (0)

Các câu hỏi tương tự
CH
Xem chi tiết
TT
Xem chi tiết
DT
Xem chi tiết
NP
Xem chi tiết
FT
Xem chi tiết
VT
Xem chi tiết
VT
Xem chi tiết
VT
Xem chi tiết
QD
Xem chi tiết