Bài 2: Dãy số

KR

Cho dãy an xác định bởi công thức

\(\left\{{}\begin{matrix}a_1=6,a_2=0\\n.a_{n+2}=\left(2n+1\right)a_{n+1}-\left(n+1\right)a_n+3n^2+3n\end{matrix}\right.\) n= 1,2,3..

Tìm SHTQ

NL
20 tháng 3 2022 lúc 9:50

\(\Leftrightarrow n\left(a_{n+2}-a_{n+1}\right)=\left(n+1\right)\left(a_{n+1}-a_n\right)+3n\left(n+1\right)\)

\(\Leftrightarrow\dfrac{a_{n+2}-a_{n+1}}{n+1}=\dfrac{a_{n+1}-a_n}{n}+3\)

Đặt \(\dfrac{a_{n+1}-a_n}{n}=b_n\Rightarrow\left\{{}\begin{matrix}b_1=\dfrac{a_2-a_1}{1}=-6\\b_{n+1}=b_n+3\end{matrix}\right.\)

\(\Rightarrow b_n\) là cấp số cộng với công sai 3

\(\Rightarrow b_n=b_1+\left(n-1\right)d=-6+3\left(n-1\right)=3n-9\)

\(\Rightarrow a_{n+1}-a_n=n\left(3n-9\right)=3n^2-9n\)

\(\Rightarrow a_{n+1}-\left(n+1\right)^3+6\left(n+1\right)^2-5\left(n+1\right)=a_n-n^3+6n^2-5n\)

Đặt \(a_n-n^3+6n^2-5n=c_n\Rightarrow\left\{{}\begin{matrix}c_1=6-1+6-5=6\\c_{n+1}=c_n=...=c_1=6\end{matrix}\right.\)

\(\Rightarrow a_n=n^3-6n^2+5n+6\)

Bình luận (0)

Các câu hỏi tương tự
MA
Xem chi tiết
SK
Xem chi tiết
TC
Xem chi tiết
MA
Xem chi tiết
TC
Xem chi tiết
TH
Xem chi tiết
SK
Xem chi tiết
KR
Xem chi tiết
TC
Xem chi tiết