M(x)=\(^{ax^2}\)+bx+c
➜M(0)=a.\(^{0^2}\)+b.0+c
➜M(0)=0+0+c➜M(0)=c
\(M\left(x\right)=0\forall x\)
+) \(M\left(0\right)=0\Leftrightarrow a.0^2+b.0+c=0\)
\(\Leftrightarrow c=0\)
+) \(M\left(1\right)=0\Leftrightarrow a.1^2+b.1+c=0\)
\(\Leftrightarrow a+b+c=0\)
\(\Leftrightarrow a+b=0\left(c=0\right)\) \(\left(1\right)\)
+) \(M=\left(-1\right)\Leftrightarrow a.\left(-1\right)^2+b.\left(-1\right)+c=0\)
\(\Leftrightarrow a-b+c=0\)
\(\Leftrightarrow a-b=0\left(2\right)\)
Từ \(\left(1\right)+\left(2\right)\Leftrightarrow\left(a+b\right)+\left(a-b\right)=0\)
\(\Leftrightarrow2a=0\)
\(\Leftrightarrow a=0\)
\(\Leftrightarrow b=0\)
Vậy \(a=b=c=0\)