cho đa thức bậc 3 f(x) = ax3 +bx2 + cx +d với a là số nguyên dương. Biết rằng f(5) - f(4) = 2012. CMR: f(7) - f(2) là hợp số
Cho đa thức \(f\left(x\right)=ax^3+bx^2+cx+d\) (a,b,c,d là các số nguyên) . Biết 7a+b+c = 0 . Chứng minh rằng f(3) . f(-2) là số chính phương
cho đa thức f(x) = ax4 + bx3 + cx2 + dx + e với a,b,c,d,e ∈ Z và a ≠ 0. Biết rằng f(x) ⋮ 7 với mọi giá trị x nguyên. Chứng minh rằng các hệ số của đa thức trên đều chia hết cho 7
cho đa thức f(x) = ax4 + bx3 + cx2 + dx + e với a,b,c,d,e ∈ Z và a ≠ 0. Biết rằng f(1) = 10; f(2) = 20; f(3) = 30. Tính giá trị của biểu thức A = \(\frac{f\left(12\right)+f\left(-8\right)}{10}+2019\)
a , chứng minh rằng đa thức f (x ) = 5x^3 - 7x^2 + 4x -2 có 1 trong các nghiệm bằng 1
b, chứng tỏ rằng đa thức f ( x ) = ax^3 + bx^2 + cx + d có 1 trong các nghiệm bằng 1 nếu a + b + c +d = 0
giúp mk với mai mk nộp bài rồi
Cho đa thức: \(F\left(x\right)=ax^3+bx^2+cx+d\) với a,b,c là các số nguyên. Biết rằng với mọi giá trị nguyên của x thì giá trị của đa thức đều chia hết cho 5. Chứng minh a,b,c,d đều chia hết cho 5
Cho đa thức: \(F\left(x\right)=ax^3+bx^2+cx+d\) với a,b,c,d là các số nguyên. Biết rằng với mọi giá trị nguyên của x thì giá trị của đa thức đều chia hết cho 5.Chứng minh a,b,c,d đều chia hết cho 5
bài 1 : Tìm GTNN(min) : A = \(\left|x-\dfrac{1}{2}\right|+\dfrac{3}{4}x\)
bài 2 : Cho P(x) = ax3 + bx2 + cx + d với a,b,c,d \(\in\) Z
Biết P(0) và P(1) là số lẻ
Chứng minh rằng : P(x) không thể có nghiệm là số nguyên
Cho đa thức f(x) = ax2 + bx + c với a, b, c là các số thực. Biết rằng f(0); f(1); f(2) có giá trị nguyên. Chứng min rằng 2a, 2b có giá trị nguyên.