Đại số lớp 7

DA

Cho đa thức f (x) = \(ax^3+bx^2+cx+d\) với a là số nguyên dương . Biết f (5) - f ( 4 ) =2012 .

Chứng minh f (7) - f (2) là hợp số .

HQ
23 tháng 4 2017 lúc 20:45

Giải:

Ta có: \(f\left(5\right)-f\left(4\right)=2012\)

\(\Leftrightarrow\left(125a+25b+5c+d\right)\)\(-\left(64a+16b+4c+d\right)=2012\)

\(\Leftrightarrow61a+9b+c=2012\)

Lại có: \(f\left(7\right)-f\left(2\right)\)

\(=\left(343a+49b+7c+d\right)-\) \(\left(8a+4b+2c+d\right)\)

\(=335a+45b+5c=305a+45b+5c+30a\)

\(=5\left(61a+9b+c\right)+30a=2012+30a\)\(=2\left(1006+15a\right)\)

Do \(a\) là số nguyên nên ta được: \(2\left(1006+15a\right)⋮2\)

Vậy \(f\left(7\right)-f\left(2\right)\) là hợp số (Đpcm)

Bình luận (0)
PV
23 tháng 4 2017 lúc 20:44

f (5)-f(4)=(125a+25b+5c+d)-(64a+19b+4c+d) =61a+9b+c=2012

f(7)-f(2)=(343a+49b+7c+d)-(8a+4b+2c+d)=335a+45b+5c=5(61a+9b+c)+30

=5*(2012+6) chia hết cho 5 mà 5*(2012+6)>5 nên là hợp sô

Bình luận (0)

Các câu hỏi tương tự
BP
Xem chi tiết
NB
Xem chi tiết
NB
Xem chi tiết
NV
Xem chi tiết
LH
Xem chi tiết
PM
Xem chi tiết
VN
Xem chi tiết
NO
Xem chi tiết
HT
Xem chi tiết