Bài 6: Cộng, trừ đa thức

H24

Cho các đa thức A=x³+3x²-4x-12 B=-2x³+3x²+4x+1 a) Chứng tỏ rằng x=2 là nghiệm của đa thức A nhưng không là nghiệm của đa thức B b) Hãy tính: A+B và A-B Ét o ét giải giúp mình với ⚠😫

H24
8 tháng 9 2023 lúc 19:09

\(a,A=x^3+3x^2-4x-12\)

\(=x^2\left(x+3\right)-4\left(x+3\right)\)

\(=\left(x^2-4\right)\left(x+3\right)\)

\(=\left(x-2\right)\left(x+2\right)\left(x+3\right)\)

Thay \(x=2\) vào A, ta được:

\(A=\left(2-2\right)\left(2+2\right)\left(2+3\right)\)

\(=0\)

⇒ \(x=2\) là nghiệm của A

\(B=-2x^3+3x^2+4x+1\)

Thay \(x=2\) vào B, ta được:

\(B=-2\cdot2^3+3\cdot2^2+4\cdot2+1\)

\(=-16+12+8+1\)

\(=5\)

⇒ \(x=2\) không là nghiệm của B

\(b,A+B=x^3+3x^2-4x-12+\left(-2x^3\right)+3x^2+4x+1\)

\(=\left[x^3+\left(-2x^3\right)\right]+\left(3x^2+3x^2\right)+\left(-4x+4x\right)+\left(-12+1\right)\)

\(=-x^3+6x^2-11\)

\(A-B=x^3+3x^2-4x-12-\left(-2x^3+3x^2+4x+1\right)\)

\(=x^3+3x^2-4x-12+2x^3-3x^2-4x-1\)

\(=\left(x^3 +2x^3\right)+\left(3x^2-3x^2\right)+\left(-4x-4x\right)+\left(-12-1\right)\)

\(=3x^3-8x-13\)

#\(Toru \)

Bình luận (2)

Các câu hỏi tương tự
CT
Xem chi tiết
TC
Xem chi tiết
AH
Xem chi tiết
NA
Xem chi tiết
PP
Xem chi tiết
PP
Xem chi tiết
HK
Xem chi tiết
ND
Xem chi tiết
3T
Xem chi tiết