Ôn tập toán 6

VL

Cho C=1/1^2+1/2^2....1/n^2.Chứng tỏ 1<C<2

BL
20 tháng 4 2017 lúc 15:22

\(C=\dfrac{1}{1^2}+\dfrac{1}{2^2}+...+\dfrac{1}{n^2}\)

\(\Rightarrow C>\dfrac{1}{1\times2}+\dfrac{1}{2\times3}+...+\dfrac{1}{n\times\left(n+1\right)}\)

\(\Rightarrow C>\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{n}-\dfrac{1}{n+1}\)

\(\Rightarrow C>1-\dfrac{1}{n+1}\)

\(\Rightarrow C>1\) (1)

Mặt khác:

\(C< 1+\dfrac{1}{1\times2}+\dfrac{1}{2\times3}+...+\dfrac{1}{\left(n-1\right)\times n}\)

\(\Rightarrow C< 1+\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{\left(n-1\right)}-\dfrac{1}{n}\)

\(\Rightarrow C< 1+1-\dfrac{1}{n}\)

\(\Rightarrow C< 2-\dfrac{1}{n}\)

\(\Rightarrow C< 2\) (2)

Từ (1)(2)=> 1<C<2

Vậy 1<C<2.(ĐPCM)

Bình luận (0)