Violympic toán 6

MH

cho biểu thức A=\(\dfrac{a^3+2a^2-1}{a^3+2a^2+2a+1}\)

a) Rút gọn biểu thức

b) Chững minh rằng nếu a là số nguyên thì giá trị của biểu thức tìm được của câu a, là một phân số tối giản.

HQ
7 tháng 3 2017 lúc 7:43

a) \(A=\frac{a^3+2a^2-1}{a^3+2a^2+2a+1}\)

\(\Rightarrow A=\frac{\left(a^3+a^2\right)+\left(a^2-1\right)}{\left(a^3+a^2\right)+\left(a^2+a\right)+\left(a+1\right)}\)

\(\Rightarrow A=\frac{a^2\left(a+1\right)+\left(a+1\right)\left(a-1\right)}{a^2\left(a+1\right)+a\left(a+1\right)+a\left(a+1\right)}\)

\(\Rightarrow A=\frac{\left(a+1\right)\left(a^2+a-1\right)}{\left(a+1\right)\left(a^2+a+1\right)}\)

\(\Rightarrow A=\frac{a^2+a-1}{a^2+a+1}\)

Vậy biểu thức \(A\) khi được rút gọn là \(\frac{a^2+a-1}{a^2+a+1}\)

b) Gọi \(ƯCLN\left(a^2+a-1;a^2+a+1\right)=d\)

\(\Rightarrow\left\{\begin{matrix}a^2+a-1⋮d\\a^2+a+1⋮d\end{matrix}\right.\)\(\Rightarrow\left(a^2+a+1\right)-\left(a^2+a-1\right)=2⋮d\)

\(\Rightarrow d=\left\{\pm1;\pm2\right\}\left(1\right)\)

Lại có:

Nếu \(a\) là số lẻ thì:

\(\left\{\begin{matrix}a^2+a+1\\a^2+a-1\end{matrix}\right.\) là số lẻ

Nếu \(a\) là số chẵn thì:

\(\left\{\begin{matrix}a^2+a+1\\a^2+a-1\end{matrix}\right.\) là số lẻ

\(\Rightarrow\left\{\begin{matrix}a^2+a+1\\a^2+a-1\end{matrix}\right.\) là số lẻ \(\forall a\) hay hai số này không có ước chẵn \(\left(2\right)\)

Từ \(\left(1\right)\)\(\left(2\right)\)

\(\Rightarrow d=\left\{\pm1\right\}\)

Vậy nếu \(a\) là số nguyên thì giá trị của biểu thức tìm được của câu \(a\), là một phân số tối giản (Đpcm)

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
NT
Xem chi tiết
KB
Xem chi tiết
BD
Xem chi tiết
PV
Xem chi tiết
NC
Xem chi tiết
NL
Xem chi tiết
PB
Xem chi tiết
MP
Xem chi tiết