Chương III : Phân số

KV

Cho \(B=\dfrac{1}{1^2}+\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{99^2}\). Chứng minh \(B< 1\dfrac{3}{4}\)

H24
1 tháng 5 2018 lúc 13:14

banhqua

B= 112+122+133+....+1992<11.2+12.3+...+199.100112+122+133+....+1992<11.2+12.3+...+199.100

Ta có: 11.2+12.3+13.4+...+199.10011.2+12.3+13.4+...+199.100

= 1−12+12−13+13−.....−199+199−11001−12+12−13+13−.....−199+199−1100

= 1−1100=99100<1<1341−1100=99100<1<134

Vậy B < 134134.

Bình luận (0)
H24
1 tháng 5 2018 lúc 12:08

B = \(\dfrac{1}{1^{2^{ }}}+\dfrac{1}{2^2}+\dfrac{1}{3^3}+....+\dfrac{1}{99^2}< \dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{99.100}\)

Ta có: \(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{99.100}\)

= \(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-.....-\dfrac{1}{99}+\dfrac{1}{99}-\dfrac{1}{100}\)

= \(1-\dfrac{1}{100}=\dfrac{99}{100}< 1< 1\dfrac{3}{4}\)

Vậy B < \(1\dfrac{3}{4}\).

Bình luận (0)

Các câu hỏi tương tự
AN
Xem chi tiết
H24
Xem chi tiết
NX
Xem chi tiết
KK
Xem chi tiết
KP
Xem chi tiết
AN
Xem chi tiết
LA
Xem chi tiết
H24
Xem chi tiết
AT
Xem chi tiết