Bài 3: Biểu thức toạ độ của các phép toán vectơ

H24

Cho ba điểm A(2; 1; −1), B(3; 2; 0) và C(2; −1; 3).

a) Chứng minh A, B, C là ba đỉnh của một tam giác. Tính chu vi tam giác ABC.

b) Tìm tọa độ trung điểm của các cạnh của tam giác ABC.

c) Tìm tọa độ trọng tâm G của tam giác ABC.

H24
29 tháng 10 2024 lúc 0:03

a) Ta có \(\overrightarrow{AB} = (1; 1; 1)\), \(\overrightarrow{AC} = (0; -2; 4)\), \(\overrightarrow{BC} = (-1; -3; 3)\).

Vì \(\overrightarrow{AB}\) và \(\overrightarrow{AC}\) không cùng phương nên A, B, C không thẳng hàng.

Do đó A, B, C là ba đỉnh của một tam giác.

Ta có chu vi tam giác ABC là:

AB + AC + BC

= \(\sqrt{1^2 + 1^2 + 1^2} + \sqrt{0^2 + (-2)^2 + 4^2} + \sqrt{(-1)^2 + (-3)^2 + 3^2}\)

= \(\sqrt{3} + 2\sqrt{5} + \sqrt{19}\)

b) Gọi A’, B’, C’ lần lượt là trung điểm của AB, BC, AC

Ta có: \(A'(\frac{{2 + 3}}{2};\frac{{1 + 2}}{2};\frac{{ - 1}}{2})\) hay \(A'(\frac{5}{2};\frac{3}{2}; - \frac{1}{2})\)

\(B'(\frac{{3 + 2}}{2};\frac{{2 - 1 }}{2};\frac{3}{2})\) hay \(B'(\frac{5}{2};\frac{1}{2}; \frac{3}{2})\)

\(C'(\frac{{2 + 2}}{2};\frac{{1 - 1}}{2};\frac{{ - 1 + 3}}{2})\) hay \(C'(2;0;1)\)

c) \(G(\frac{{2 + 3 + 2}}{3};\frac{{1 + 2 - 1}}{3};\frac{{ - 1 + 3}}{3})\) hay \(G(\frac{7}{3};\frac{2}{3};\frac{2}{3})\)

Bình luận (0)