Violympic toán 7

LN

Cho \(A=\frac{1}{1\cdot2}+\frac{1}{3\cdot4}+\frac{1}{5\cdot6}+...+\frac{1}{99\cdot100}\)

Chứng minh rằng:

a) \(A=\frac{1}{51}+\frac{1}{52}+\frac{1}{53}+...+\frac{1}{100}\)

b) \(\frac{7}{12}< A< \frac{5}{6}\)

TL
3 tháng 4 2020 lúc 14:00

undefinedundefined

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
AB
Xem chi tiết
CA
Xem chi tiết
HM
Xem chi tiết
NH
Xem chi tiết
MM
Xem chi tiết
DH
Xem chi tiết
DH
Xem chi tiết
NS
Xem chi tiết
TH
Xem chi tiết