Violympic toán 6

NM

Cho \(A=\dfrac{1}{3^2}+\dfrac{1}{6^2}+\dfrac{1}{9^2}+...+\dfrac{1}{9n^2}.\)

Chứng tỏ rằng

A\(< \dfrac{2}{9}\)

NH
4 tháng 6 2017 lúc 12:50

Bộ ông rảnh rỗi sinh nông nổi ak ??

Ta có :

\(A=\dfrac{1}{3^2}+\dfrac{1}{6^2}+\dfrac{1}{9^2}+....................+\dfrac{1}{9n^2}\)

\(\Rightarrow A=\dfrac{1}{\left(3.1\right)^2}+\dfrac{1}{\left(3.2\right)^2}+\dfrac{1}{\left(3.3\right)^2}+...................+\dfrac{1}{\left(3n\right)^2}\)

\(\Rightarrow A=\dfrac{2}{9}\left(\dfrac{1}{1^2}+\dfrac{1}{2^2}+\dfrac{1}{3^2}+..............+\dfrac{1}{n^2}\right)\)

\(\Rightarrow A< \dfrac{2}{9}\left(\dfrac{1}{1}+\dfrac{1}{1.2}+\dfrac{1}{2.3}+..................+\dfrac{1}{\left(n-1\right)n}\right)\)

\(\Rightarrow A< \dfrac{2}{9}\left(1+1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+.........+\dfrac{1}{n-1}-\dfrac{1}{n}\right)\)

\(\Rightarrow A< \dfrac{2}{9}\left(1+1-\dfrac{1}{n}\right)\)

\(\Rightarrow A< \dfrac{2}{9}\left(2-\dfrac{1}{n}\right)< \dfrac{2}{9}\)

\(\Rightarrow A< \dfrac{2}{9}\rightarrowđpcm\)

P/S : Lâu lâu ko ôn dạng này nên quên hết ồi!!

Bình luận (12)

Các câu hỏi tương tự
AW
Xem chi tiết
NC
Xem chi tiết
XT
Xem chi tiết
TL
Xem chi tiết
DX
Xem chi tiết
MK
Xem chi tiết
H24
Xem chi tiết
LN
Xem chi tiết
NT
Xem chi tiết