Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Cho a, b, x, y, z là 5 số tự nhiên khác 0 thỏa mãn: \(a^2+b^2=x^2+y^2+z^2\)
Chứng minh: Tổng \(S=a+b+x+y+z\) là hợp số.
a) Cho các số a,b,c,d khác 0 . Tính :
T = \(x^{2011}+y^{2011}+z^{2011}+t^{2011}\)
Biết x,y,z,t thoả mãn \(\dfrac{x^{2010}+y^{2010}+z^{2010}+t^{2010}}{a^2+b^2+c^2+d^2}=\dfrac{x^{2010}}{a^2}+\dfrac{y^{2010}}{b^2}+\dfrac{z^{2010}}{c^2}+\dfrac{t^{2010}}{d^2}\)
b) Tìm số tự nhiên M nhỏ nhất có 4 chữ số thoả mãn điều kiện
M=a+b=c+d=e+f
Nếu câu b thiếu j thì các bạn cứ bỏ qua nha
Cho a,b,c,x,y,z là các số nguyên dương và 3 số a,b,c khác 1 thỏa mãn: \(a^x=bc;b^y=ca;c^z=ab\)
CMR:
x+y+z+2=xyz.
Cho các số nguyên dương x, y, z thỏa mãn \(x^2+y^2=z^2\). Chứng minh rằng:
\(x+3z-y\) là hợp số.
Cho a,b,c,x,y,z là các số thực khác 0,thỏa:
\(\dfrac{x}{a}=\dfrac{y}{b}=\dfrac{z}{c}\).CMR:\(\dfrac{x^2+y^2+z^2}{\left(ax+by+cz\right)}=\dfrac{1}{a^2+b^2+c^2}\)
cho các số a,b,c,d khác 0 và các số x,y,z,t thỏa mãn \(\dfrac{x^{2010}+y^{2010}+z^{2010}+t^{2010}}{a^2+b^2+c^2+d^2}=\dfrac{x^{2010}}{a^2}+\dfrac{y^{2010}}{b^2}+\dfrac{z^{2010}}{c^2}+\dfrac{t^{2010}}{d^2}\)
1. Cho a, b, c, x, y, z khác 0 thỏa mãn bx=ay; cy=bx
Chứng minh rằng: \(\dfrac{a^2}{x}+\dfrac{b^2}{y}+\dfrac{c^2}{z}=\dfrac{\left(a+b+c\right)^2}{x+y+z}\)
2. Tìm các giá trị x, y thỏa mãn \(\left|2x-3y\right|^{2015}+\left(x+y+x\right)^{2014}=0\)
3. Tìm các cặp số (x;y) thỏa mãn:\(\dfrac{y^4-x^4}{15}=\dfrac{y^4+x^4}{17}\) và x.y=2
cho các số a,b,c,d khác 0, tính: T= x2011+ y2011+ z2011+ t2011
biết x,y,z,t thỏa mãn: \(\dfrac{x^{2010}+y^{2010}+z^{2010}+t^{2010}}{a^2+b^2+c^2+d^2}=\dfrac{x^{2010}}{a^2}+\dfrac{y^{2010}}{b^2}+\dfrac{z^{2010}}{c^2}+\dfrac{t^{2010}}{d^2}\)
cho các số a,b,c,d\(\ne\)0 . tính:
T= \(x^{2011}+y^{2011}+z^{2011}+t^{2011}\)
biết x,y,z,t thỏa mãn:
\(\dfrac{x^{2010}+y^{2010}+z^{2010}+t^{2010}}{a^2+b^2+c^2+d^2}=\dfrac{x^{2010}}{a^2}+\dfrac{y^{2010}}{b^2}+\dfrac{z^{2o1o}}{c^2}+\dfrac{t^{2010}}{d^2}\)