Violympic toán 7

DT

cho a+b+c=2016 và \(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}=\dfrac{1}{4}\)

Tính \(A=\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}\)

H24
13 tháng 3 2017 lúc 21:15

theo bài ra ta có:

\(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}=\dfrac{`1}{4}\)

\(\Rightarrow\left(a+b+c\right)\left(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}\right)=\dfrac{1}{4}\left(a+b+c\right)\)

\(\Rightarrow\dfrac{a+b+c}{a+b}+\dfrac{a+b+c}{b+c}+\dfrac{a+b+c}{c+a}=\dfrac{a+b+c}{4}\)

\(\Rightarrow1+\dfrac{c}{a+b}+\dfrac{a}{b+c}+1+\dfrac{b}{c+a}+1=\dfrac{2016}{4}\)

\(\Rightarrow\left(1+1+1\right)+\left(\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}\right)=504\)

\(\Rightarrow3+\left(\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}\right)=504\)

\(\Rightarrow\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}=504-3\)

\(\Rightarrow\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}=501\)

vậy \(\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}=501\)

Bình luận (0)
LT
13 tháng 3 2017 lúc 10:41

(a+b+c)(1/a+b+1/b+c+1/c+a)=(a+b+c)/4

(a+b+c)/(a+b)+(a+b+c)/(b+c)+(a+b+c)/(c+a)=(a+b+c)/4

=> 1+c/(a+b)+1+a/(b+c)+1+b/(c+a)=2016/4

<=>c/(a+b)+a/(b+c)+b/(c+a)+3=504

=> A=a/(b+c)+b/(c+a)+c/(a+b)=504-3=501

Bình luận (0)
TY
13 tháng 3 2017 lúc 10:03

a.b.c

Bình luận (0)

Các câu hỏi tương tự
YN
Xem chi tiết
BU
Xem chi tiết
DT
Xem chi tiết
CB
Xem chi tiết
GD
Xem chi tiết
PA
Xem chi tiết
TN
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết