Ôn tập toán 6

ND

CHo a;b;c thuộc N* . CMR : P=\(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}\) không phải là số tự nhiên

 

SG
26 tháng 10 2016 lúc 21:01
CM: P > 1

\(P=\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}>\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}\)

\(P>\frac{a+b+c}{a+b+c}\)

\(P>1\left(1\right)\)

CM: P < 2

Áp dụng \(\frac{a}{b}< 1\Leftrightarrow\frac{a}{b}< \frac{a+c}{b+c}\) (a;b;c \(\in\) N*), ta có:

\(P=\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}< \frac{a+c}{a+b+c}+\frac{a+b}{a+b+c}+\frac{b+c}{a+b+c}\)

\(P< \frac{2.\left(a+b+c\right)}{a+b+c}\)

\(P< 2\left(2\right)\)

Từ (1) và (2) => 1 < P < 2

=> P không phải số tự nhiên (đpcm)

 

Bình luận (0)

Các câu hỏi tương tự
DL
Xem chi tiết
TH
Xem chi tiết
LT
Xem chi tiết
JP
Xem chi tiết
TK
Xem chi tiết
HV
Xem chi tiết
NO
Xem chi tiết
TK
Xem chi tiết
NT
Xem chi tiết