Violympic toán 7

H24

Cho a,b,c \(\ne0\), đôi một khác nhau thoả mãn:

a(y-z)=b(x-z)=c(x+y)

CMR: \(\dfrac{y+z}{a\left(b+c\right)}+\dfrac{z+x}{b\left(a-c\right)}=\dfrac{x-y}{c\left(a-b\right)}\)

MS
2 tháng 1 2018 lúc 0:40

Đề sai hay sao á, k rút gọn được.

fix: \(a\left(y+z\right)=b\left(z+x\right)=c\left(x+y\right)\)

Cần chứng minh: \(\dfrac{y-z}{a\left(b-c\right)}=\dfrac{z-x}{b\left(c-a\right)}=\dfrac{x-y}{c\left(a-b\right)}\)

Lời giải:

Từ \(a\left(y+z\right)=b\left(z+x\right)=c\left(x+y\right)\)

\(\Rightarrow\dfrac{a\left(y+z\right)}{abc}=\dfrac{b\left(z+x\right)}{abc}=\dfrac{c\left(x+y\right)}{abc}\)

\(\Rightarrow\dfrac{y+z}{bc}=\dfrac{z+x}{ac}=\dfrac{x+y}{ab}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{y+z}{bc}=\dfrac{z+x}{ac}=\dfrac{x+y}{ab}=\dfrac{x+y-z-x}{ab-ac}=\dfrac{y+z-x-y}{bc-ab}=\dfrac{z+x-y-z}{ac-ab}=\dfrac{y-z}{a\left(b-c\right)}=\dfrac{z-x}{b\left(c-a\right)}=\dfrac{x-y}{a\left(c-b\right)}\left(đpcm\right)\)

Bình luận (0)

Các câu hỏi tương tự
NL
Xem chi tiết
DX
Xem chi tiết
MM
Xem chi tiết
YN
Xem chi tiết
JH
Xem chi tiết
LS
Xem chi tiết
DX
Xem chi tiết
DV
Xem chi tiết
BB
Xem chi tiết