Violympic toán 7

LB

Cho a,b,c khác 0 và thỏa mãn: 2ab+1 trên 2b=2bc+1 trên c=ac+1 trên a CMR:a=2b=c hoặc 4a^2.b^2.c^2=1

AH
27 tháng 3 2020 lúc 23:08

Lời giải:

Theo đề bài ta có:

\(\frac{2ab+1}{2b}=\frac{2bc+1}{c}=\frac{ac+1}{a}\Leftrightarrow a+\frac{1}{2b}=2b+\frac{1}{c}=c+\frac{1}{a}\)

\(\Rightarrow \left\{\begin{matrix} a-2b=\frac{1}{c}-\frac{1}{2b}=\frac{2b-c}{2bc}\\ a-c=\frac{1}{a}-\frac{1}{2b}=\frac{2b-a}{2ab}\\ 2b-c=\frac{1}{a}-\frac{1}{c}=\frac{c-a}{ac}\end{matrix}\right.\)

Nhân theo vế:
\((a-2b)(a-c)(2b-c)=\frac{(2b-c)(2b-a)(c-a)}{4a^2b^2c^2}=\frac{(2b-c)(a-2b)(a-c)}{4a^2b^2c^2}\)

\(\Leftrightarrow (a-2b)(a-c)(2b-c)\left[1-\frac{1}{4a^2b^2c^2}\right]=0\)

$\Rightarrow (a-2b)(a-c)(2b-c)=0$ hoặc $1-\frac{1}{4a^2b^2c^2}=0$

TH1: $(a-2b)(a-c)(2b-c)=0$\(\Rightarrow \left\{\begin{matrix} a=2b\\ a=c\\ 2b=c\end{matrix}\right.\)

+Nếu $a=2b$ thì $\frac{2b-c}{2bc}=a-2b=0\Rightarrow 2b-c=0\Rightarrow 2b=c$

$\Rightarrow a=2b=c$

+ Nếu $a=c, 2b=c$: hoàn toàn tương tự suy ra $a=2b=c$

TH2: $1-\frac{1}{4a^2b^2c^2}=0\Rightarrow 4a^2b^2c^2=1$

Vậy ta có đpcm.

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
NT
Xem chi tiết
CK
Xem chi tiết
NA
Xem chi tiết
HD
Xem chi tiết
CS
Xem chi tiết
TD
Xem chi tiết
QM
Xem chi tiết
QM
Xem chi tiết
KK
Xem chi tiết