Violympic toán 7

TH
Cho ABC có AB = 6 cm; AC = 8 cm; BC = 10 cm. a) Chứng tỏ tam giác ABC vuông tại A. b)Vẽ phân giác BM của BM cua goc B ( M thuộc AC), từ M vẽ MN vuong goc BC ( N thuoc BC). Chứng minh MA = MN c) Tia NM cắt tia BA tại P. Chứng minh tgAMP = tgNMC rồi suy ra MP > MN
NQ
29 tháng 5 2019 lúc 13:20

a) Có \(AB^2+AC^2=6^2+8^2=100\) ; \(BC^2=10^2=100\)

ta thấy \(AB^2+AC^2=BC^2=100\)

=> \(\Delta ABC\) vuông tại A

b) Xét \(\Delta ABM\)\(\Delta NBM\) có:

\(\widehat{ABM}=\widehat{NBM};BM:chung;\widehat{BAM}=\widehat{BNM}\)

=> \(\Delta ABM\) = \(\Delta NBM\)

=> AM = MN

c) Xét \(\Delta AMP\)\(\Delta NMC\)có :

\(\widehat{AMP}=\widehat{CMN};AM=NM;\widehat{PAM}=\widehat{CNM}=90^o\)

=> \(\Delta AMP\) = \(\Delta NMC\)

Xét \(\Delta AMP\) vuông tại A

=> MP > AM mà AM = MN

=> MP > MN

=

Bình luận (0)
VT
29 tháng 5 2019 lúc 16:03

Hình bạn tự vẽ nha.

a) Ta có: AB2 + AC2 = 62 + 82 = 36 + 64 = 100

BC2 = 102 = 100

=> AB2 + AC2 = BC2 (=100)

Áp dụng định lí Py - ta - go đảo

=> ΔABC vuông tại A.

b) Xét 2 Δ vuông ABM và NBM có:

∠BAM = ∠BNM = 90 độ

Cạnh BM chung

∠B1 = ∠B2 (vì BM là tia phân giác của ∠B)

=> ΔABM = ΔNBM (cạnh huyền - góc nhọn)

=> AM = NM (2 cạnh tương ứng)

c) Xét 2 Δ vuông AMP và NMC có:

∠PAM = ∠CNM = 90 độ

AM = NM (cmt)

∠AMP = ∠CMN (vì 2 góc đối đỉnh)

=> ΔAMP = ΔNMC

+) Xét Δ PAM vuông tại A có:

∠PAM = 90 độ là góc lớn nhất

=> PM là cạnh lớn nhất

=> PM > AM

mà AM = MN (cmt)

=> PM > MN.

Chúc bạn học tốt!

Bình luận (0)
TL
18 tháng 6 2019 lúc 11:49

App giải toán không cần nhập đề chỉ cần chụp ảnh cho cả nhà đây: https://www.facebook.com/watch/?v=485078328966618

Bình luận (0)
TL
18 tháng 6 2019 lúc 11:49

Đề thi thử + tính điểm với những đề mới nhất cả nhà tải app dùng thử nhé https://giaingay.com.vn/downapp.html

Bình luận (0)
TL
18 tháng 6 2019 lúc 11:49

Tải app giải toán và kết bạn trao đổi nào cả nhà: https://www.facebook.com/watch/?v=485078328966618

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
PQ
Xem chi tiết
LL
Xem chi tiết
37
Xem chi tiết
TM
Xem chi tiết
CC
Xem chi tiết
BT
Xem chi tiết
LL
Xem chi tiết
MA
Xem chi tiết