Violympic toán 7

H24

cho abc = 2015 , tính A=\(\frac{2015a}{ab+2015a+2015}+\frac{b}{bc+b+2015}+\frac{c}{ac+c+1}\)

VT
22 tháng 1 2020 lúc 18:02

Ta có:

\(A=\frac{2015a}{ab+2015a+2015}+\frac{b}{bc+b+2015}+\frac{c}{ac+c+1}\)

\(\Rightarrow A=\frac{abca}{ab+abca+abc}+\frac{b}{bc+b+abc}+\frac{c}{ac+c+1}\)

\(\Rightarrow A=\frac{a^2bc}{ab.\left(1+ac+c\right)}+\frac{b}{b.\left(c+1+ac\right)}+\frac{c}{ac+c+1}\)

\(\Rightarrow A=\frac{ac}{1+ac+c}+\frac{1}{c+1+ac}+\frac{c}{ac+c+1}\)

\(\Rightarrow A=\frac{ac}{ac+1+c}+\frac{1}{ac+1+c}+\frac{c}{ac+1+c}\)

\(\Rightarrow A=\frac{ac+1+c}{ac+1+c}\)

\(\Rightarrow A=1.\)

Vậy \(A=1.\)

Chúc bạn học tốt!

Bình luận (0)
 Khách vãng lai đã xóa
NT
22 tháng 1 2020 lúc 20:03

Thay $abc=2015$ vào $A$ ta có:

\(\begin{array}{l} A = \dfrac{{{a^2}bc}}{{ab + {a^2}bc + abc}} + \dfrac{b}{{bc + b + abc}} + \dfrac{c}{{ac + c + 1}}\\ A = \dfrac{{{a^2}bc}}{{ab\left( {1 + ac + c} \right)}} + \dfrac{b}{{b\left( {c + 1 + ac} \right)}} + \dfrac{c}{{ac + c + 1}}\\ A = \dfrac{{ac}}{{ac + c + 1}} + \dfrac{1}{{ac + c + 1}} + \dfrac{c}{{ac + c + 1}}\\ A = \dfrac{{ac + c + 1}}{{ac + c + 1}} = 1 \end{array}\)

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
BU
Xem chi tiết
NH
Xem chi tiết
VH
Xem chi tiết
DH
Xem chi tiết
DH
Xem chi tiết
2G
Xem chi tiết
DH
Xem chi tiết
DH
Xem chi tiết
DH
Xem chi tiết