Violympic toán 6

HN

Cho A=8n+11...1(N chữ số 1) Hãy chứng minh rằng A chia hết cho 9

AH
10 tháng 11 2017 lúc 0:01

Lời giải:

\(A=8n+\underbrace{11....111}_{n}=8n+\frac{\underbrace{99....999}_{n}}{9}=8n+\frac{10^n-1}{9}\)

Quy nạp

Ta thấy:

\(n=1\Rightarrow A_1=9\vdots 9\)

\(n=2\Rightarrow A_2=27\vdots 9\)

......

Giả sử điều trên đúng với \(n=k\), tức là \(A_k=8k+\frac{10^k-1}{9}\vdots 9\), giờ ta cần chứng minh bài toán đúng với \(n=k+1\)

Thật vậy:\(A_{k+1}=8(k+1)+\frac{10^{k+1}-1}{9}=8k+8+\frac{10(10^k-1)+9}{9}\)

\(A_{k+1}=8k+\frac{10^k-1}{9}+(10^k-1)+9\)

Có: \(8k+\frac{10^k-1}{9}=A_{k}\vdots 9\)

\(10^k-1=10^k-1^k=(10-1)(10^{k-1}+...+1)\vdots 9\)

\(9\vdots 9\)

\(\Rightarrow A_{k+1}\vdots 9\)

Vậy kết quả quy nạp đúng. ta có đpcm.

Bình luận (0)

Các câu hỏi tương tự
NQ
Xem chi tiết
TL
Xem chi tiết
DC
Xem chi tiết
NT
Xem chi tiết
DK
Xem chi tiết
HN
Xem chi tiết
LT
Xem chi tiết
PO
Xem chi tiết
HL
Xem chi tiết