Ôn tập toán 6

TD

Cho A=2+22+23+...+260. Chứng tỏ rằng A chia hết cho 3,7,15.

LR
26 tháng 7 2016 lúc 8:47

A=2+22+23+....+260

A=(2+22)+(23+24)+...+(259+260)

A=2.3+23.3+....+259.3 chia hết cho 3 

2) A=2+22+23+...+260

A=(2+22+23)+.... +(258+259+260)

A=2.7+....+258.7 chia hết cho 7 

3) A=2+22+23+....+260

A=(2+22+23+24)+....+(257+258+259+260)

A=2.15+....+257.15 chia hết cho 15

Bình luận (0)
VT
26 tháng 7 2016 lúc 8:50

A= (2+22)+(23+24)+...+(259+260)

A=2.(1+2)+23.(1+2)+...+259.(1+2)

A=2.3+23.3+...+259.3

A=3.(2+23+...+259)

Vì 3 chia hết cho 3 => 3.(2+23+...+259)  chia hết cho 3

=>A  chia hết cho 3

A= (2+22+23)+...+(258+259+260)

A=2.(1+2+22)+...+258.(1+2+22)

A=2.7+...+258.7

A=7.(2+...+258)

Vì 7  chia hết cho 7 =>7.(2+...+258)  chia hết cho 7

=>A  chia hết cho 7

 

A= (2+22+23+24)+...+(257+258+259+260)

A=2.(1+2+22+23)+...+257.(1+2+22+23)

A=2.15 +...+257.15

A=15.(2+...+257)

vì 15 chia hết cho15=>15.(2+...+25) chia hết cho 15

=>A chia hết cho 15

Bình luận (0)

Các câu hỏi tương tự
KK
Xem chi tiết
NT
Xem chi tiết
YN
Xem chi tiết
YN
Xem chi tiết
YN
Xem chi tiết
AP
Xem chi tiết
HN
Xem chi tiết
YN
Xem chi tiết
LN
Xem chi tiết