Ôn tập toán 6

H24

Cho A = \(\dfrac{1}{5}+\dfrac{1}{5^2}+\dfrac{1}{5^3}+...+\dfrac{1}{5^{2014}}\). Chứng minh A < \(\dfrac{1}{4}\)

Help me!

LH
31 tháng 3 2017 lúc 15:52

A=\(\dfrac{1}{5}+\dfrac{1}{5^2}+\dfrac{1}{5^3}+...+\dfrac{1}{5^{2014}}\)

5A=\(\dfrac{5}{5}+\dfrac{5}{5^2}+\dfrac{5}{5^3}+...+\dfrac{5}{5^{2014}}\)

5A=\(1+\dfrac{1}{5}+\dfrac{1}{5^2}+...+\dfrac{1}{5^{2013}}\)

5A-A=\(\left(1+\dfrac{1}{5}+\dfrac{1}{5^2}+...+\dfrac{1}{5^{2013}}\right)-\left(\dfrac{1}{5}+\dfrac{1}{5^2}+\dfrac{1}{5^3}+...+\dfrac{1}{5^{2014}}\right)\)4A=\(1-\dfrac{1}{5^{2014}}\)

4A=\(\dfrac{5^{2014}-1}{5^{2014}}\)

A=\(\dfrac{5^{2014}-1}{5^{2014}}:4\)

A=\(\dfrac{5^{2014}-1}{5^{2014}}.\dfrac{1}{4}\)

\(\Rightarrow\)A<\(\dfrac{1}{4}\)

Bình luận (0)
TA
31 tháng 3 2017 lúc 16:01

Ta có:

A = \(\dfrac{1}{5}+\dfrac{1}{5^2}+\dfrac{1}{5^3}+....+\dfrac{1}{5^{2014}}\)

\(\Rightarrow\) 5A = 5\(\left(\dfrac{1}{5}+\dfrac{1}{5^2}+\dfrac{1}{5^3}+....+\dfrac{1}{5^{2014}}\right)\)

\(\Rightarrow\) 5A = \(\dfrac{5}{5}+\dfrac{5}{5^2}+\dfrac{5}{5^3}+....+\dfrac{5}{5^{2014}}\)

\(\Rightarrow\) 5A = \(1+\dfrac{1}{5}+\dfrac{1}{5^2}+....+\dfrac{1}{5^{2013}}\)

\(\Rightarrow\)\(\left(1+\dfrac{1}{5}+\dfrac{1}{5^2}+....+\dfrac{1}{5^{2013}}\right)\)-\(\left(\dfrac{1}{5}+\dfrac{1}{5^2}+\dfrac{1}{5^3}+....+\dfrac{1}{5^{2014}}\right)\) = 5A - A

\(\Rightarrow\)4A= 1 - \(\dfrac{1}{5^{2014}}\)

\(\Rightarrow\) A =\(\dfrac{5^{2014}-1}{5^{2014}}\) : 4

Vậy A =\(\dfrac{5^{2014}-1}{5^{2014}}\) : 4

Bình luận (0)

Các câu hỏi tương tự
PN
Xem chi tiết
NA
Xem chi tiết
H24
Xem chi tiết
NB
Xem chi tiết
TY
Xem chi tiết
HH
Xem chi tiết
TH
Xem chi tiết
HV
Xem chi tiết
TM
Xem chi tiết