Bài 6: So sánh phân số

GV

Cho A = \(\dfrac{1}{4}\)+\(\dfrac{1}{9}\)+\(\dfrac{1}{16}\)+....+\(\dfrac{1}{81}\)+\(\dfrac{1}{100}\) chứng tỏ rằng A > \(\dfrac{65}{132}\)

H24
12 tháng 5 2017 lúc 9:11

Có:

\(A=\dfrac{1}{4}+\dfrac{1}{9}+\dfrac{1}{16}+...+\dfrac{1}{81}+\dfrac{1}{100}\)

\(A=\dfrac{1}{4}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{9^2}+\dfrac{1}{10^2}\)

Mà: \(\dfrac{1}{3^2}>\dfrac{1}{3.4}\)

\(\dfrac{1}{4^2}>\dfrac{1}{4.5}\)

...

\(\dfrac{1}{9^2}>\dfrac{1}{9.10}\)

\(\dfrac{1}{10^2}>\dfrac{1}{10.11}\)

\(\Rightarrow A>\dfrac{1}{4}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+...+\dfrac{1}{9.10}+\dfrac{1}{10.11}\)

\(A>\dfrac{1}{4}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+...+\dfrac{1}{9.10}+\dfrac{1}{10.11}\)

\(\Rightarrow A>\dfrac{1}{4}+\dfrac{1}{3}-0-0-...-0-\dfrac{1}{11}\)

\(\Rightarrow A>\dfrac{1}{4}+\dfrac{1}{3}-\dfrac{1}{11}\)

\(\Rightarrow A>\dfrac{65}{132}\)

Chúc bạn học tốt!ok

Bình luận (0)

Các câu hỏi tương tự
LN
Xem chi tiết
PH
Xem chi tiết
SP
Xem chi tiết
NX
Xem chi tiết
DH
Xem chi tiết
NX
Xem chi tiết
NX
Xem chi tiết
NX
Xem chi tiết
H24
Xem chi tiết