Ôn tập toán 6

TQ

Cho a , b , c là các số nguyên dương . Chứng tỏ tổng sau ko có giá trị là số nguyên .

\(\dfrac{a}{a+b}+\dfrac{b}{b+c}+\dfrac{c}{c+a}\)

LF
11 tháng 3 2017 lúc 20:21

Ta có:\(\dfrac{a}{a+b}>\dfrac{a}{a+b+c}\left(a,b,c>0\right)\)

Suy ra \(\dfrac{b}{b+c}>\dfrac{b}{a+b+c};\dfrac{c}{c+a}>\dfrac{c}{a+b+c}\)

\(\Rightarrow\dfrac{a}{a+b}+\dfrac{b}{b+c}+\dfrac{c}{c+a}>\dfrac{a+b+c}{a+b+c}=1\left(1\right)\)

Lại có: \(\dfrac{a}{a+b}< \dfrac{a+b}{a+b+c}\left(a,b,c>0\right)\)

Suy ra \(\dfrac{b}{b+c}< \dfrac{b+c}{a+b+c};\dfrac{c}{c+a}< \dfrac{c+a}{a+b+c}\)

\(\Rightarrow\dfrac{a}{a+b}+\dfrac{b}{b+c}+\dfrac{c}{c+a}< \dfrac{a+b+b+c+c+a}{a+b+c}\)

\(=\dfrac{2\left(a+b+c\right)}{a+b+c}=2\left(2\right)\). Từ \((1)\)\((2)\) ta có:

\(1< \dfrac{a}{a+b}+\dfrac{b}{b+c}+\dfrac{c}{c+a}< 2\) (Không là số nguyên)

Bình luận (0)
NT
11 tháng 3 2017 lúc 22:02

Ta có :\(\dfrac{a}{a+b+c}< \dfrac{a}{a+b}< \dfrac{a+c}{a+b+c}\)

\(\dfrac{b}{a+b+c}< \dfrac{b}{c+b}< \dfrac{b+a}{a+b+c}\)

\(\dfrac{c}{a+b+c}< \dfrac{c}{a+c}< \dfrac{b+c}{a+b+c}\)

\(\Rightarrow\dfrac{a}{a+b+c}+\dfrac{b}{a+b+c}+\dfrac{c}{a+b+c}< \dfrac{a}{a+b}+\dfrac{b}{b+c}+\dfrac{c}{c+a}< \dfrac{a+c}{a+b+c}+\dfrac{b+a}{a+b+c}+\dfrac{c+b}{a+b+c}\)\(\Rightarrow1< \dfrac{a}{a+b}+\dfrac{b}{b+c}+\dfrac{c}{c+a}< 2\)

\(\Rightarrow\)ĐPCM

Bình luận (0)

Các câu hỏi tương tự
TQ
Xem chi tiết
VN
Xem chi tiết
PA
Xem chi tiết
CS
Xem chi tiết
DP
Xem chi tiết
LH
Xem chi tiết
PL
Xem chi tiết
JP
Xem chi tiết
TT
Xem chi tiết