\(A=2^1+2^2+2^3+...+2^{90}\)
\(=\left(2^1+2^2+2^3\right)+...+\left(2^{88}+2^{89}+2^{90}\right)\)
\(=2^1\left(1+2+2^2\right)+...+2^{88}\left(1+2+2^2\right)\)
\(=2^1\cdot7+...+2^{88}\cdot7\)
\(=7\left(2^1+...+2^{88}\right)⋮7\)
A= 21+ 22+ 23+......+290
= (21+22+23) +.......+ (288+289+290)
=21( 1+2+22)+ .......+288(1+2+22)
=21.7+......+288.7
=7.(21+.....+288_)
=> Tổng A chia hết cho 7