LT

Cho 4 tỉ số bằng nhau \(\dfrac{a+b+c}{d};\dfrac{b+c+d}{a};\dfrac{c+d+a}{b};\dfrac{d+a+b}{c}\) tìm giá trị của mỗi tỉ số trên

NL
13 tháng 11 2021 lúc 14:15

\(\dfrac{a+b+c}{d}=\dfrac{b+c+d}{a}=\dfrac{c+d+a}{b}=\dfrac{d+a+b}{c}\)

TH1: \(a+b+c+d=0\)

\(\Rightarrow\dfrac{a+b+c}{d}=\dfrac{b+c+d}{a}=\dfrac{c+d+a}{b}=\dfrac{d+a+b}{c}=\dfrac{-c}{c}=-1\)

TH2: \(a+b+c+d\ne0\)

\(\Rightarrow\dfrac{a+b+c}{d}=\dfrac{b+c+d}{a}=\dfrac{c+d+a}{b}=\dfrac{d+a+b}{c}=\dfrac{2\left(a+b+c+d\right)}{a+b+c+d}=2\)

Bình luận (0)

Các câu hỏi tương tự
LT
Xem chi tiết
NH
Xem chi tiết
CD
Xem chi tiết
TN
Xem chi tiết
NL
Xem chi tiết
Xem chi tiết
H24
Xem chi tiết
hj
Xem chi tiết
H24
Xem chi tiết