Chương III : Phân số

KL

Cho 3 số nguyên dương a , b , c sao cho mỗi số nhỏ hơn tổng hai số kia . Chứng minh rằng :

\(\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}< 2\)

mấy bn giúp mik vs, mik đang cần gấp

AH
5 tháng 5 2018 lúc 21:10

Lời giải:

Ta có:

\(\frac{a}{b+c}=\frac{2a}{2(b+c)}=\frac{2a}{(b+c)+(b+c)}< \frac{2a}{a+b+c}\) (do mỗi số nhỏ hơn tổng hai số kia thì \(a< b+c\))

Hoàn toàn tương tự:

\(\left\{\begin{matrix} \frac{b}{c+a}< \frac{2b}{a+b+c}\\ \frac{c}{a+b}< \frac{2c}{a+b+c}\end{matrix}\right.\)

Cộng theo vế các BĐT vừa thu được ta có:

\(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}< \frac{2a}{a+b+c}+\frac{2b}{a+b+c}+\frac{2c}{a+b+c}=2\)

Ta có đpcm.

Bình luận (0)