Ôn tập toán 6

NT

Cho 198 đường thẳng trong đó bất kì 2 đường thẳng nào cũng cắt nhau. Không có 3 đường thẳng nào đồng qui. Tính số giao điểm của chúng.

 

NB
20 tháng 5 2016 lúc 18:47

Bạn xem lời giải của mình nhé:

Giải:

Mỗi đường thảng cắt 197 đường thẳng còn lại tạo nên 197 giao điểm => có 197 x 198 giao điểm. Nhưng nếu tính theo cách này thì mỗi giao điểm sẽ được tính 2 lần (VD: nếu ta có đoạn a cắt đoạn b và đoạn c tại B và C; đoạn b cắt đoạn a và đoạn c tại A và C; đoạn c cắt đoạn a và đoạn b tại A và B thì 3 điểm A; B; C được tính 2 lần).

Vậy số giao điểm thực tế sẽ là:  \(\frac{197.198}{2}=19503\) giao điểm.

Chúc bạn học tốt!hihi

Bình luận (0)
NB
20 tháng 5 2016 lúc 18:53

Phần mỗi đường thẳng cắt 197 đường thẳng còn lại thì mk ghi thiếu, là vì có 198 đường thẳng nên ta có 197 x 198 bạn nhé

Bình luận (0)
NT
20 tháng 5 2016 lúc 18:53

Bạn có chắc không vậy

Bình luận (0)
NT
20 tháng 5 2016 lúc 18:55

thanks nhé Nguyễn Thế Bảo

Bình luận (0)

Các câu hỏi tương tự
TT
Xem chi tiết
NT
Xem chi tiết
CK
Xem chi tiết
NP
Xem chi tiết
KK
Xem chi tiết
PA
Xem chi tiết
NT
Xem chi tiết
MT
Xem chi tiết
CT
Xem chi tiết