Câu 1: a) Tìm số tự nhiên x biết 2^x + 2^x+1 + 2^x+3 +....+ 2^x+2015=2^2019-8
b) So sánh: 36^25 và 25^36
Câu 2: Cho phân số: p= 6n+5/3n+2
a) Chứng minh rằng phân số p là phân số tối giản
b) Với giá trị nào của n thì phân số p có giá trị lớn nhất? Tìm giá trị lớn nhất đó
Câu 3: Tìm các số nguyên dương x, y thỏa mãn: 2x + 3y = 14
Câu 3 :
Ta có : 14 = 2 . 7 => 2 . 7 chia hết cho 2
=> 2x + 3y chia hết cho 2
=> 2x chia hết cho 2
=> 3y chia hết cho 2
Vì ƯC(2;3) = 1
=> 3y chia hết cho 2 => y chia hết cho 2
=> 3y ≤ 14
=> y ≤ 14/3
=> y ≤ 4
=> y = 2 ; y = 4
Với y = 2 => 2x + 3 - 2 = 14=> x = 4
y = 4 => 2x + 3 . 4 = 14 => x = 1
Vậy với x = 2 thì y = 4
x = 4 thì y = 2
Câu 3 :
Ta có : 14 = 2 . 7 => 2 . 7 chia hết cho 2
=> 2x + 3y chia hết cho 2
=> 2x chia hết cho 2
=> 3y chia hết cho 2
Vì ƯC(2;3) = 1
=> 3y chia hết cho 2 => y chia hết cho 2
=> 3y ≤ 14
=> y ≤ 14/3
=> y ≤ 4
=> y = 2 ; y = 4
Với y = 2 => 2x + 3 - 2 = 14=> x = 4
y = 4 => 2x + 3 . 4 = 14 => x = 1
Vậy với x = 2 thì y = 4
x = 4 thì y = 2
Câu 3 :
Ta có : 14 = 2 . 7 => 2 . 7 chia hết cho 2
=> 2x + 3y chia hết cho 2
=> 2x chia hết cho 2
=> 3y chia hết cho 2
Vì ƯC(2;3) = 1
=> 3y chia hết cho 2 => y chia hết cho 2
=> 3y ≤ 14
=> y ≤ 14/3
=> y ≤ 4
=> y = 2 ; y = 4
Với y = 2 => 2x + 3 - 2 = 14=> x = 4
y = 4 => 2x + 3 . 4 = 14 => x = 1
Vậy với x = 2 thì y = 4
x = 4 thì y = 2
Câu 3 :
Ta có : 14 = 2 . 7 => 2 . 7 chia hết cho 2
=> 2x + 3y chia hết cho 2
=> 2x chia hết cho 2
=> 3y chia hết cho 2
Vì ƯC(2;3) = 1
=> 3y chia hết cho 2 => y chia hết cho 2
=> 3y ≤ 14
=> y ≤ 14/3
=> y ≤ 4
=> y = 2 ; y = 4
Với y = 2 => 2x + 3 - 2 = 14=> x = 4
y = 4 => 2x + 3 . 4 = 14 => x = 1
Vậy với x = 2 thì y = 4
x = 4 thì y = 2
Ta có : 14 = 2 . 7 => 2 . 7 chia hết cho 2
=> 2x + 3y chia hết cho 2
=> 2x chia hết cho 2
=> 3y chia hết cho 2
Vì ƯC(2;3) = 1
=> 3y chia hết cho 2 => y chia hết cho 2
=> 3y ≤ 14
=> y ≤ 14/3
=> y ≤ 4
=> y = 2 ; y = 4
Với y = 2 => 2x + 3 - 2 = 14=> x = 4
y = 4 => 2x + 3 . 4 = 14 => x = 1
Vậy với x = 2 thì y = 4
x = 4 thì y = 2
Ta có : 14 = 2 . 7 => 2 . 7 chia hết cho 2
=> 2x + 3y chia hết cho 2
=> 2x chia hết cho 2
=> 3y chia hết cho 2
Vì ƯC(2;3) = 1
=> 3y chia hết cho 2 => y chia hết cho 2
=> 3y ≤ 14
=> y ≤ 14/3
=> y ≤ 4
=> y = 2 ; y = 4
Với y = 2 => 2x + 3 - 2 = 14=> x = 4
y = 4 => 2x + 3 . 4 = 14 => x = 1
Vậy với x = 2 thì y = 4
x = 4 thì y = 2
Câu 3 :
Ta có : 14 = 2 . 7 => 2 . 7 chia hết cho 2
=> 2x + 3y chia hết cho 2
=> 2x chia hết cho 2
=> 3y chia hết cho 2
Vì ƯC(2;3) = 1
=> 3y chia hết cho 2 => y chia hết cho 2
=> 3y ≤ 14
=> y ≤ 14/3
=> y ≤ 4
=> y = 2 ; y = 4
Với y = 2 => 2x + 3 - 2 = 14=> x = 4
y = 4 => 2x + 3 . 4 = 14 => x = 1
Vậy với x = 2 thì y = 4
x = 4 thì y = 2
Câu 2 a)
Gọi d là Ư CLN(6n+5; 3n+2)
ta có: 6n+5 chia hết cho d 3n+2 chia hết cho d
=> 6n+5 - 3n+2 chia hết cho d
=> 6n+5 - 2(3n+2) chia hết cho d
=> 6n+5 - 6n+4 chia hết cho d
=> d = 1
Vậy 6n+5 và 3n+2 là hai số nguyên tố cùng nhau nên \(\frac{6n+5}{3n+2}\)tối giản
ban biet giai bai 1 chua bao to voi