Bài 1: Tập hợp, phần tử của tập hợp

KH

Câu 1

a) Số tự nhiên a khi chia cho 17 dư 11, chia cho 23 dư 18, chia cho 11 dư 3. Hỏi a chia cho 4301 dư bao nhiêu?

b) Tìm chữ số tận cùng của tổng A = 11 + 25 + 39 + 413 + … + 5042013 + 5052017

PH
9 tháng 5 2019 lúc 20:57

a) Ta có:

a=17k+11⇒a+74=17k+85⋮17

a=23t+18⇒a+74=23t+92⋮23

a=11m+3⇒a+74=11m+77⋮11

Từ đó ta có: a+74∈ BC(17;23;11)

BCNN(17;23;11)=17.23.11=4301

➞a+74∈ B(4301)

⇒a+74=4301q (q∈N*)

⇒a+74-4301=4301q-4301

⇒a-4227=4301(q-1)⇒a=4301(q-1)+4227

Vậy a khi chia cho 4301 thì dư 4227.

b) Nhận xét: số mũ của các số hạng có dạng 4k+1(k∈N)

Chữ số tận cùng của A là chữ số tận cùng của tổng 1+2+3+...+505

Vậy chữ số tận cùng của A là 5

Bình luận (0)

Các câu hỏi tương tự
NT
Xem chi tiết
HV
Xem chi tiết
DA
Xem chi tiết
OP
Xem chi tiết
NN
Xem chi tiết
H24
Xem chi tiết
Xem chi tiết
KP
Xem chi tiết
OK
Xem chi tiết