\(\left|\left(x^2+3\right)\left(y+1\right)\right|=16\Rightarrow\left|\left(x^2+3\right)\right|.\left|\left(y+1\right)\right|=16\)\(\Rightarrow\left(x^2+3\right)\left|\left(y+1\right)\right|=16\)
\(\Rightarrow x^2+3\inƯ\left(16\right)=\left\{-16;-8;-4;-2;-1;1;2;4;8;16\right\}\)
Vì \(x^2+3>0+2=2\) với \(x\) nguyên dương \(\Rightarrow x^2+3=4\) hoặc \(x^2+3=8\) hoặc \(x^2+3=16\).
+) \(x^2+3=4\Rightarrow x^2=1\) (nhận) và \(\left|y+1\right|=4\)
+) \(x^2+3=8\Rightarrow x^2=5\) (loại)
+) \(x^2+3=16\Rightarrow x^2=13\) (loại)
\(x^2=1\Rightarrow x=1\) (vì \(x\) nguyên dương)
\(\left|y+1\right|=4\Rightarrow y=3\) (nhận) hoặc \(y=-5\) (loại, vì \(y\) nguyên dương).
Vậy \(\left(x;y\right)=\left(1;3\right)\).