\(\cdot\dfrac{10}{x}< \dfrac{x}{11}\Rightarrow x^2< 110\Rightarrow-\sqrt{110}< x< \sqrt{110}\\ \cdot\dfrac{x}{11}< \dfrac{12}{x}\Rightarrow x^2< 132\Rightarrow-\sqrt{132}< x< \sqrt{132}\)\(\Rightarrow-\sqrt{132}< x< \sqrt{132}\)
\(\dfrac{10}{x}< \dfrac{x}{11}< \dfrac{12}{x}\)
<=> \(\dfrac{110}{11x}< \dfrac{x^2}{11x}< \dfrac{132}{11x}\)
<=> 110 < x2 < 132
<=> x2 = 121
<=> x = 11
@Khánh Linh