\(2^{150}=\left(2^3\right)^{50}=8^{50}\)
\(3^{100}=\left(3^2\right)^{50}=9^{50}\)
\(8^{50}< 9^{50}\)
Vậy \(2^{150}< 3^{100}\)
\(2^{150}=\left(2^3\right)^{50}=8^{50}\)
\(3^{100}=\left(3^2\right)^{50}=9^{50}\)
\(8^{50}< 9^{50}\)
Vậy \(2^{150}< 3^{100}\)
So sánh các số sau: 2150 và 3100.
cho A=(\(\dfrac{1}{2^2}-1\))(\(\dfrac{1}{3^2}-1\))(\(\dfrac{1}{2^2}-1\))...........(\(\dfrac{1}{100^2}-1\)).SO sánh A với \(\dfrac{-1}{2}\)
So sánh:
a. A= 99.10k- 10k+2 và B= 10k
b. 9920 và 999910
Cho 2 đa thức: P(x)=1+x+2x2+...+2015x2015
và Q(x) =x2015+x2014+...+x2+x+1
Tính đa thứcH(x) sao cho Q(x)=P(x)-H(x)
So sánh P(\(\dfrac{1}{2}\)) với 3
So Sánh : A = \(\dfrac{2009^{2009}+1}{2009^{2010}+1}\) và B = \(\dfrac{2009^{2010}-2}{2009^{2011}-2}\)
So Sánh : \(\left(\dfrac{1}{16}\right)^{200}\)và\(\left(\dfrac{1}{2}\right)^{1000}\)
Cho M = \(1-\dfrac{1}{2}-\dfrac{1}{2^2}-\dfrac{1}{2^3}-\dfrac{1}{2^4}-....-\dfrac{1}{2^{10}}\) . So sánh M với \(\dfrac{1}{2^{11}}\)
So Sánh : S = \(\dfrac{1}{5}+\dfrac{1}{9}+\dfrac{1}{10}+\dfrac{1}{41}+\dfrac{1}{42}\) và \(\dfrac{1}{2}\)